scispace - formally typeset


About: Einstein is a(n) research topic. Over the lifetime, 13089 publication(s) have been published within this topic receiving 236956 citation(s). more

More filters

Journal ArticleDOI
01 Mar 1997-Physics World
Abstract: In 1924 the Indian physicist Satyendra Nath Bose sent Einstein a paper in which he derived the Planck law for black-body radiation by treating the photons as a gas of identical particles. Einstein generalized Bose's theory to an ideal gas of identical atoms or molecules for which the number of particles is conserved and, in the same year, predicted that at sufficiently low temperatures the particles would become locked together in the lowest quantum state of the system. We now know that this phenomenon, called Bose-Einstein condensation (BEC), only happens for "bosons" – particles with a total spin that is an integer multiple of h, the Planck constant divided by 2π. more

3,177 citations

Journal ArticleDOI
Ted Jacobson1Institutions (1)
TL;DR: The Einstein equation is derived from the form of black hole entropy together with the fundamental relation $\delta Q=TdS$ connecting heat, entropy, and temperature, and its validity is seen to depend on the existence of local equilibrium conditions. more

Abstract: The Einstein equation is derived from the proportionality of entropy and the horizon area together with the fundamental relation $\ensuremath{\delta}Q\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}T\mathrm{dS}$. The key idea is to demand that this relation hold for all the local Rindler causal horizons through each spacetime point, with $\ensuremath{\delta}Q$ and $T$ interpreted as the energy flux and Unruh temperature seen by an accelerated observer just inside the horizon. This requires that gravitational lensing by matter energy distorts the causal structure of spacetime so that the Einstein equation holds. Viewed in this way, the Einstein equation is an equation of state. more

2,112 citations

Journal ArticleDOI
Richard C. Tolman1Institutions (1)
15 Feb 1939-Physical Review
Abstract: A method is developed for treating Einstein's field equations, applied to static spheres of fluid, in such a manner as to provide explicit solutions in terms of known analytic functions. A number of new solutions are thus obtained, and the properties of three of the new solutions are examined in detail. It is hoped that the investigation may be of some help in connection with studies of stellar structure. (See the accompanying article by Professor Oppenheimer and Mr. Volkoff.) more

1,877 citations

01 Jan 1922-
Abstract: In 1921, five years after the appearance of his comprehensive paper on general relativity and twelve years before he left Europe permanently to join the Institute for Advanced Study, Albert Einstein visited Princeton University, where he delivered the Stafford Little Lectures for that year. These four lectures constituted an overview of his then-controversial theory of relativity. Princeton University Press made the lectures available under the title "The Meaning of Relativity," the first book by Einstein to be produced by an American publisher. As subsequent editions were brought out by the Press, Einstein included new material amplifying the theory. A revised version of the appendix "Relativistic Theory of the Non-Symmetric Field," added to the posthumous edition of 1956, was Einstein's last scientific paper. more

1,605 citations

01 Jan 1916-
Abstract: A handsome annotated edition of Einstein's celebrated book on relativity After completing the final version of his general theory of relativity in November 1915, Albert Einstein wrote Relativity. Intended for a popular audience, the book remains one of the most lucid explanations of the special and general theories ever written. This edition of Einstein's celebrated book features an authoritative English translation of the text along with commentaries by Hanoch Gutfreund and Jurgen Renn that examine the evolution of Einstein's thinking and cast his ideas in a modern context. Providing invaluable insight into one of the greatest scientific minds of all time, the book also includes a unique survey of the introductions from past editions, covers from selected early editions, a letter from Walther Rathenau to Einstein discussing the book, and a revealing sample from Einstein's original handwritten manuscript. more

1,475 citations

Network Information
Related Topics (5)
General relativity

29K papers, 810.8K citations

93% related
Metric expansion of space

8.1K papers, 248.3K citations

92% related
Schwarzschild radius

9.2K papers, 268.3K citations

91% related
Quantum gravity

20.3K papers, 681.9K citations

91% related
Quantum cosmology

4.6K papers, 129.6K citations

90% related
No. of papers in the topic in previous years

Top Attributes

Show by:

Topic's top 5 most impactful authors

Albert Einstein

49 papers, 4.4K citations

Sergiu I. Vacaru

39 papers, 1.2K citations

Tilman Sauer

27 papers, 338 citations

Claude LeBrun

24 papers, 650 citations

Jürgen Renn

19 papers, 497 citations