scispace - formally typeset
Search or ask a question
Topic

Einstein field equations

About: Einstein field equations is a research topic. Over the lifetime, 3571 publications have been published within this topic receiving 109491 citations. The topic is also known as: Einstein's equations.


Papers
More filters
Book
19 May 2003
TL;DR: A survey of the known solutions of Einstein's field equations for vacuum, Einstein-Maxwell, pure radiation and perfect fluid sources can be found in this paper, where the solutions are ordered by their symmetry group, their algebraic structure (Petrov type) or other invariant properties such as special subspaces or tensor fields and embedding properties.
Abstract: A paperback edition of a classic text, this book gives a unique survey of the known solutions of Einstein's field equations for vacuum, Einstein-Maxwell, pure radiation and perfect fluid sources. It introduces the foundations of differential geometry and Riemannian geometry and the methods used to characterize, find or construct solutions. The solutions are then considered, ordered by their symmetry group, their algebraic structure (Petrov type) or other invariant properties such as special subspaces or tensor fields and embedding properties. Includes all the developments in the field since the first edition and contains six completely new chapters, covering topics including generation methods and their application, colliding waves, classification of metrics by invariants and treatments of homothetic motions. This book is an important resource for graduates and researchers in relativity, theoretical physics, astrophysics and mathematics. It can also be used as an introductory text on some mathematical aspects of general relativity.

3,502 citations

Journal ArticleDOI
TL;DR: In this article, the authors derived finite, purely imaginary values for the actions of the Kerr-Newman solutions and de Sitter space, which they used to evaluate the entropy of these metrics and find that it is always equal to one quarter the area of the event horizon in fundamental units.
Abstract: One can evaluate the action for a gravitational field on a section of the complexified spacetime which avoids the singularities. In this manner we obtain finite, purely imaginary values for the actions of the Kerr-Newman solutions and de Sitter space. One interpretation of these values is that they give the probabilities for finding such metrics in the vacuum state. Another interpretation is that they give the contribution of that metric to the partition function for a grand canonical ensemble at a certain temperature, angular momentum, and charge. We use this approach to evaluate the entropy of these metrics and find that it is always equal to one quarter the area of the event horizon in fundamental units. This agrees with previous derivations by completely different methods. In the case of a stationary system such as a star with no event horizon, the gravitational field has no entropy.

3,067 citations

Journal ArticleDOI
TL;DR: In this paper, a new class of solutions of the Einstein field equations is presented, which describe wormholes that, in principle, could be traversed by human beings, and it is essential in these solutions that the wormhole possess a throat at which there is no horizon.
Abstract: Rapid interstellar travel by means of spacetime wormholes is described in a way that is useful for teaching elementary general relativity. The description touches base with Carl Sagan’s novel C o n t a c t, which, unlike most science fiction novels, treats such travel in a manner that accords with the best 1986 knowledge of the laws of physics. Many objections are given against the use of black holes or Schwarzschild wormholes for rapid interstellar travel. A new class of solutions of the Einstein field equations is presented, which describe wormholes that, in principle, could be traversed by human beings. It is essential in these solutions that the wormhole possess a throat at which there is no horizon; and this property, together with the Einstein field equations, places an extreme constraint on the material that generates the wormhole’s spacetime curvature: In the wormhole’s throat that material must possess a radial tension τ0 with the enormous magnitude τ0∼ (pressure at the center of the most massive of neutron stars)×(20 km)2/(circumference of throat)2. Moreover, this tension must exceed the material’s density of mass‐energy, ρ0 c 2. No known material has this τ0>ρ0 c 2property, and such material would violate all the ‘‘energy conditions’’ that underlie some deeply cherished theorems in general relativity. However, it is not possible today to rule out firmly the existence of such material; and quantum field theory gives tantalizing hints that such material might, in fact, be possible.

2,169 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that in all except the spherically symmetric cases there is a nontrivial causality violation, i.e., there are closed timelike lines which are not removable by taking a covering space; moreover, when the charge or angular momentum is so large that there are no Killing horizons, this causal violation is of the most flagrant possible kind in that it is possible to connect any event to any other by a future-directed time line.
Abstract: The Kerr family of solutions of the Einstein and Einstein-Maxwell equations is the most general class of solutions known at present which could represent the field of a rotating neutral or electrically charged body in asymptotically flat space. When the charge and specific angular momentum are small compared with the mass, the part of the manifold which is stationary in the strict sense is incomplete at a Killing horizon. Analytically extended manifolds are constructed in order to remove this incompleteness. Some general methods for the analysis of causal behavior are described and applied. It is shown that in all except the spherically symmetric cases there is nontrivial causality violation, i.e., there are closed timelike lines which are not removable by taking a covering space; moreover, when the charge or angular momentum is so large that there are no Killing horizons, this causality violation is of the most flagrant possible kind in that it is possible to connect any event to any other by a future-directed timelike line. Although the symmetries provide only three constants of the motion, a fourth one turns out to be obtainable from the unexpected separability of the Hamilton-Jacobi equation, with the result that the equations, not only of geodesics but also of charged-particle orbits, can be integrated completely in terms of explicit quadratures. This makes it possible to prove that in the extended manifolds all geodesics which do not reach the central ring singularities are complete, and also that those timelike or null geodesics which do reach the singularities are entirely confined to the equator, with the further restriction, in the charged case, that they be null with a certain uniquely determined direction. The physical significance of these results is briefly discussed.

1,881 citations

Journal ArticleDOI
TL;DR: In this paper, a convenient way of splitting the metric tensor and the Einstein field equations, applicable in any space-time, is first introduced, and suitable boundary conditions are set.
Abstract: Gravitational fields containing bounded sources and gravitational radiation are examined by analyzing their properties at spatial infinity. A convenient way of splitting the metric tensor and the Einstein field equations, applicable in any space-time, is first introduced. Then suitable boundary conditions are set. The group of co-ordinate transformations that preserves the boundary conditions is analyzed. Different possible gravitational fields are characterized intrinsically by a combination of (i) characteristic initial data, and (ii) Dirichlet data at spatial infinity. To determine a particular solution one must specify four functions of three variables and three functions of two variables; these functions are not subject to constraints. A method for integrating the field equations is given; the asymptotic behaviour of the metric and Riemann tensors for large spatial distances is analyzed in detail; the dynamical variables of the radiation modes are exhibited; and a superposition principle for the radiation modes of the gravitational field is suggested. Among the results are: (i) the group of allowed co-ordinate transformations contains the inhomogeneous orthochronous Lorentz group as a subgroup; (ii) each of the five leading terms in an asymptotic expansion of the Riemann tensor has the algebraic structure previously predicted from analyzing the Petrov classification; (iii) gravitational waves appear to carry mass away from the interior; (iv) time-dependent periodic solutions of the field equations which obey the stated boundary conditions do not exist. It was found that the general fields studied in the present work are in many ways very similar to the axially symmetric fields recently studied by Bondi, van der Burg & Metzner.

1,716 citations


Network Information
Related Topics (5)
General relativity
29K papers, 810.8K citations
93% related
Gauge theory
38.7K papers, 1.2M citations
90% related
Dark energy
20K papers, 750.8K citations
90% related
Gravitation
29.3K papers, 821.5K citations
90% related
Supersymmetry
29.7K papers, 1.1M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202326
202261
202196
202098
2019105
201884