scispace - formally typeset
Search or ask a question
Topic

Elastic modulus

About: Elastic modulus is a research topic. Over the lifetime, 33153 publications have been published within this topic receiving 810247 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, selective laser melting (SLM) was used to produce commercially pure titanium (CP-Ti) and Ti-TiB composite parts with three different porosity levels (i.e., 10, 17, and 37%).
Abstract: Commercially pure titanium (CP-Ti) and Ti–TiB composite parts with three different porosity levels (i.e. 10%, 17% and 37%) were produced by selective laser melting (SLM). Scanning electron microscopy (SEM) investigations show that martensitic (α′) microstructure exists in SLM-processed CP-Ti parts, whilst SLM-processed Ti–TiB composites present needle-shape TiB particles distributed in α-Ti matrix. Mechanical properties of these porous samples decrease with porosity level increasing. The yield strength and elastic modulus of porous CP-Ti parts range 113–350 MPa and 13–68 GPa respectively, which are much lower than those for porous Ti–TiB counterparts (234–767 MPa and 25–84 GPa respectively) mainly due to the strengthening effect induced by TiB particles in Ti–TiB samples. Compression stress–strain curves of 37% porous CP-Ti parts show a typical three-stage behavior of ductile porous metals. Also, the elastic moduli of both 37% porous CP-Ti and Ti–TiB samples are similar to that of human bone. SEM investigations of the porous CP-Ti samples after compression testing show that no crack presents until 50% compressive strain and most of deformation is absorbed by porous areas. In contrast, μ-CT investigations indicate that all porous Ti–TiB samples fail at early stages of compression testing due to cracks resulting from insufficient ductility of struts of porous areas, because they are not able to accommodate high strains of the deformation at high strengths.

218 citations

Journal ArticleDOI
TL;DR: A principle of stretchable materials that disrupt the toughness–hysteresis correlation, achieving both high toughness and low hysteresi is described.
Abstract: In materials of all types, hysteresis and toughness are usually correlated. For example, a highly stretchable elastomer or hydrogel of a single polymer network has low hysteresis and low toughness. The single network is commonly toughened by introducing sacrificial bonds, but breaking and possibly reforming the sacrificial bonds causes pronounced hysteresis. In this paper, we describe a principle of stretchable materials that disrupt the toughness-hysteresis correlation, achieving both high toughness and low hysteresis. We demonstrate the principle by fabricating a composite of two constituents: a matrix of low elastic modulus, and fibers of high elastic modulus, with strong adhesion between the matrix and the fibers, but with no sacrificial bonds. Both constituents have low hysteresis (5%) and low toughness (300 J/m2), whereas the composite retains the low hysteresis but achieves high toughness (10,000 J/m2). Both constituents are prone to fatigue fracture, whereas the composite is highly fatigue resistant. We conduct experiment and computation to ascertain that the large modulus contrast alleviates stress concentration at the crack front, and that strong adhesion binds the fibers and the matrix and suppresses sliding between them. Stretchable materials of high toughness and low hysteresis provide opportunities to the creation of high-cycle and low-dissipation soft robots and soft human-machine interfaces.

218 citations

Journal ArticleDOI
TL;DR: In this paper, the surface dilational elastic moduli of bubbles immersed in water and soap bubbles in air were measured using either image analysis or pressure measurements, and it was possible with this method to measure directly the Gibbs elasticity.
Abstract: We have measured the surface dilational elastic moduli of bubbles immersed in water and soap bubbles in air. The short time response was obtained by submitting the bubbles to a rapid expansion after which the surface tension evolution was monitored, using either image analysis or pressure measurements. It was possible with this method to measure directly the Gibbs elasticity. The longer time response was obtained by submitting the bubbles to low frequency oscillations. Experiments were performed with solutions of non-ionic surfactants, C12E6, C12G2, their 1:1 mixture, Pluronic F-68 and 127 and the surface elastic moduli were compared with the stability of foams made with these surfactants. The foams evolve with time, first by Ostwald ripening, controlled by the low frequency elasticity, and then by bubbles coalescence, controlled by the high frequency elasticity.

218 citations

Journal ArticleDOI
TL;DR: In this paper, a theory is formulated to connect the strength of cement paste with its porosity, which shows that bending strength is largely dictated by the length of the largest pores, but there is also an influence of the volume of porosity which affects toughness through changing elastic modulus and fracture energy.
Abstract: A theory is formulated to connect the strength of cement paste with its porosity. The theory shows that bending strength is largely dictated by the length of the largest pores, as in the Griffith (1920) model, but there is also an influence of the volume of porosity, which affects toughness through changing elastic modulus and fracture energy. Verification of this theory was achieved by observing the large pores in cement, and then relating bending strength to the measured defect length, modulus and fracture energy. The argument was proved by developing processes to remove the large pores from cement pastes, thereby raising the bending strength to 70 MPa. Further removal of colloidal pores gave a bending strength of 150 MPa and compression strength up to 300 MPa with improved toughness. Re-introduction of controlled pores into these macro-defect-free (mdf) cements allowed Feret’s law (1897) to be explained.

218 citations

Journal ArticleDOI
TL;DR: In this paper, the authors compared tensile, compressive and interlaminar shear properties of different carbon reinforcement/polyamide composites obtained by interfacial polymerization and hot compression molding techniques.

217 citations


Network Information
Related Topics (5)
Ultimate tensile strength
129.2K papers, 2.1M citations
94% related
Microstructure
148.6K papers, 2.2M citations
87% related
Finite element method
178.6K papers, 3M citations
86% related
Coating
379.8K papers, 3.1M citations
85% related
Amorphous solid
117K papers, 2.2M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023611
20221,303
20211,450
20201,401
20191,447
20181,369