scispace - formally typeset
Search or ask a question
Topic

Elastic modulus

About: Elastic modulus is a research topic. Over the lifetime, 33153 publications have been published within this topic receiving 810247 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that the nonlinearI–V characteristics observed at different temperatures can be accurately accounted for with no adjustable parameters, by considerations of the mechanical compression of the membrane due to stresses induced by the electric field.
Abstract: The dielectric breakdown in the membranes of cells ofValonia utricularis was investigated using intracellular electrodes and 500-μsec current pulses. Electrical breakdown, which occurs when the membrane potential reaches a well-defined critical value, is not associated with global damage to the cell or its membranes (the membrane reseals in <5 sec). It was thus possible to investigate the effect of temperature on dielectric breakdown in single cells. It was found that the critical potential for breakdown was strongly dependent on temperature, decreasing from ∼1000 mV at 4°C to ∼640 mV at 30°C. The decrease in the breakdown potential with increasing temperature and the very short rise-time of the breakdown current (∼1 μsec) suggests that the Wien field dissociation does not play a major role in the breakdown process. It is shown that the nonlinearI–V characteristics observed at different temperatures can be accurately accounted for with no adjustable parameters, by considerations of the mechanical compression of the membrane due to stresses induced by the electric field. Electrical breakdown on this scheme results from an electromechanical instability in the membrane. On this basis the present results indicate that the elastic modulus of the region of the membrane where breakdown occurs, decreases by a factor of 2 with increasing temperature from 4 to 30°C. On the assumption of a thickness of 4.0 nm and a dielectric constant of 5, the elastic modulus is estimated to have a value of 5×106 Nm−2 at 20°C.

199 citations

Journal ArticleDOI
TL;DR: New concepts appertaining to the release of soft fouling organisms are proposed, which take into account the deformation in the adhesive base of the adherand and deformation of the PDMS film.
Abstract: The effect of modulus and film thickness on the release of adhered spores and sporelings (young plants) of the green fouling alga Ulva (syn. Enteromorpha) was investigated. PDMS elastomers of constant thickness (100 microm) but different elastic moduli were prepared by varying cross-link density with functional silicone oligomers with degrees of polymerization ranging from 18-830. This provided a 50-fold range of modulus values between 0.2 and 9.4 MPa. Three PDMS coatings of different thicknesses were tested at constant elastic modulus (0.8 MPa). The data revealed no significant increase in percentage spore removal except at the lowest modulus of 0.2 MPa although sporelings released more readily at all but the highest modulus. The influence of coating thickness was also greater for the release of sporelings compared to spores. The release data are discussed in the light of fracture mechanics models that have been applied to hard fouling. New concepts appertaining to the release of soft fouling organisms are proposed, which take into account the deformation in the adhesive base of the adherand and deformation of the PDMS film.

199 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used a particular model from the variation of the effective Poisson's ratio to determine the effective bulk modulus of a porosity-dependent hollow sphere.
Abstract: The principles of continuum mechanics can be extended to porous solids only if the effective moduli are known. Although the effective bulk modulus has already been determined by approximating the geometry of a porous solid to be a hollow sphere, bounds could only be established for the other moduli. This problem of indeterminacy of the moduli is solved in this study using a particular model from the variation of the effective Poisson's ratio. In addition to this, the results are extended for the hollow sphere to real geometry by introducing a porositydependent factor. These results are compared with experimental data and the agreement is found to be good. As the effective Poisson's ratio cannot be determined accurately using experiments, the derived equation is verified using finite element analysis.

199 citations

Journal ArticleDOI
TL;DR: The bone-like elastic modulus and modified surface topography of the Ta-PIII modified PEEK synergistically induce osteogenic differentiation of bMSCs and the surface-modified materials have large potential in dental and orthopedic implants.

199 citations

Journal ArticleDOI
TL;DR: In this paper, the role of the excess free volume that is created during plastic deformation in strain softening of amorphous metals was conducted. But, their results can be explained by postulating the formation of nanovoids due to the coalescence of the extra free volume, which leads to the observation of reduced hardness.

199 citations


Network Information
Related Topics (5)
Ultimate tensile strength
129.2K papers, 2.1M citations
94% related
Microstructure
148.6K papers, 2.2M citations
87% related
Finite element method
178.6K papers, 3M citations
86% related
Coating
379.8K papers, 3.1M citations
85% related
Amorphous solid
117K papers, 2.2M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023611
20221,303
20211,450
20201,401
20191,447
20181,369