scispace - formally typeset
Search or ask a question
Topic

Elastic modulus

About: Elastic modulus is a research topic. Over the lifetime, 33153 publications have been published within this topic receiving 810247 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The results suggest that trabecular plates play an essential role in determining elastic properties of trabECular bone.
Abstract: The roles of microarchitecture and types of trabeculae in determining elastic modulus of trabecular bone have been studied in μCT images of 29 trabecular bone samples by comparing their Young's moduli calculated by finite element analysis (FEA) with different trabecular type-specific reconstructions. The results suggest that trabecular plates play an essential role in determining elastic properties of trabecular bone. Introduction: Osteoporosis is an age-related disease characterized by low bone mass and architectural deterioration. Other than bone volume fraction (BV/TV), microarchitecture of bone is also believed to be important in governing mechanical properties of trabecular bone. We quantitatively examined the role of microarchitecture and relative contribution of trabecular types of individual trabecula in determining the elastic property of trabecular bone. Materials and Methods: Twenty-nine human cadaveric trabecular bone samples were scanned at 21-μm resolution using a μCT system. Digital topological analysis (DTA) consisting of skeletonization and classification was combined with a trabecular type-specific reconstruction technique to extract the skeleton and identify topological type of trabeculae of the original trabecular bone image. Four different μCT-based finite element (FE) models were constructed for each specimen: (1) original full voxel; (2) skeletal voxel; (3) rod-reconstructed, preserving rod volume and plate skeleton; and (4) plate-reconstructed, preserving plate volume and rod skeleton. For each model, the elastic moduli were calculated under compression along each of three image-coordinate axis directions. Plate and rod tissue fractions directly measured from DTA-based topological classification were correlated with the elastic moduli computed from full voxel model. Results: The elastic moduli of skeleton models were significantly correlated with those of full voxel models along all three coordinate axes (r2 = 0.38−0.53). The rod-reconstructed model contained 21.3% of original bone mass and restored 1.5% of elastic moduli, whereas the plate-reconstructed model contained 90.3% of bone mass and restored 53.2% of elastic moduli. Plate tissue fraction showed a significantly positive correlation (r2 = 0.49) with elastic modulus by a power law, whereas rod tissue fraction showed a significantly negative correlation (r2 = 0.42). Conclusions: These results quantitatively show that the microarchitecture alone affects elastic moduli of trabecular bone and trabecular plates make a far greater contribution than rods to the bone's elastic behavior.

189 citations

Patent
14 Apr 2003
TL;DR: In this paper, the authors proposed a method of making low dielectric constant films with improved elastic modulus, which involves providing a porous network coating produced from a resin containing at least 2 Si-H groups where the coating has been thermally cured and has a dielectoric constant in the range of from about 1.1 to about 3.5.
Abstract: Low dielectric constant films with improved elastic modulus. The method of making such coatings involves providing a porous network coating produced from a resin containing at least 2 Si—H groups where the coating has been thermally cured and has a dielectric constant in the range of from about 1.1 to about 3.5, and plasma treating the coating to convert the coating into porous silica. Plasma treatment of the network coating yields a coating with improved modulus, but with a higher dielectric constant. The coating is plasma treated for between about 15 and 120 seconds at a temperature less than or about 350° C. The plasma treated coating can optionally be annealed. Rapid thermal processing (RTP) of the plasma treated coating reduces the dielectric constant of the coating while maintaining an improved elastic modulus as compared to the initial porous coating. The annealing temperature is preferably in excess of or about 350° C., and the annealing time is preferably at least or about 120 seconds. The annealed, plasma treated coating has a dielectric constant in the range of from about 1.1 to about 2.4 and an improved elastic modulus.

189 citations

Journal ArticleDOI
01 Jan 1998-Carbon
TL;DR: Theoretical Young's moduli have been estimated for carbon fibers composed of single-walled fullerene nanotubules aligned in the direction of the tubule axis as discussed by the authors.

189 citations

Journal ArticleDOI
19 Sep 2012-PLOS ONE
TL;DR: Analysis of the response of single 3T3 fibroblasts that were indented with a micrometer-sized bead attached to an AFM cantilever at forces from 30–600 pN found that at such small deformations, the elastic modulus of 100 Pa is largely determined by the presence of the actin cortex.
Abstract: The measurement of the elastic properties of cells is widely used as an indicator for cellular changes during differentiation, upon drug treatment, or resulting from the interaction with the supporting matrix. Elasticity is routinely quantified by indenting the cell with a probe of an AFM while applying nano-Newton forces. Because the resulting deformations are in the micrometer range, the measurements will be affected by the finite thickness of the cell, viscous effects and even cell damage induced by the experiment itself. Here, we have analyzed the response of single 3T3 fibroblasts that were indented with a micrometer-sized bead attached to an AFM cantilever at forces from 30-600 pN, resulting in indentations ranging from 0.2 to 1.2 micrometer. To investigate the cellular response at lower forces up to 10 pN, we developed an optical trap to indent the cell in vertical direction, normal to the plane of the coverslip. Deformations of up to two hundred nanometers achieved at forces of up to 30 pN showed a reversible, thus truly elastic response that was independent on the rate of deformation. We found that at such small deformations, the elastic modulus of 100 Pa is largely determined by the presence of the actin cortex. At higher indentations, viscous effects led to an increase of the apparent elastic modulus. This viscous contribution that followed a weak power law, increased at larger cell indentations. Both AFM and optical trapping indentation experiments give consistent results for the cell elasticity. Optical trapping has the benefit of a lower force noise, which allows a more accurate determination of the absolute indentation. The combination of both techniques allows the investigation of single cells at small and large indentations and enables the separation of their viscous and elastic components.

188 citations

Journal ArticleDOI
TL;DR: The composites with the higher amounts of silane showed the lower values for the tandelta at the T(g) revealing that these composites have better interfacial adhesion between filler and matrix.

188 citations


Network Information
Related Topics (5)
Ultimate tensile strength
129.2K papers, 2.1M citations
94% related
Microstructure
148.6K papers, 2.2M citations
87% related
Finite element method
178.6K papers, 3M citations
86% related
Coating
379.8K papers, 3.1M citations
85% related
Amorphous solid
117K papers, 2.2M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023611
20221,303
20211,450
20201,401
20191,447
20181,369