scispace - formally typeset
Search or ask a question
Topic

Elastic modulus

About: Elastic modulus is a research topic. Over the lifetime, 33153 publications have been published within this topic receiving 810247 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the physical and mechanical properties of granite samples were analyzed after a heating and rapid cooling treatment in order to characterize the changes in physical and physical properties of the rocks, and it was found that the porosity of granite is significantly deteriorated by the thermal treatment.
Abstract: High-temperature treatment may cause changes in physical and mechanical properties of rocks. Temperature changing rate (heating, cooling and both of them) plays an important role in those changes. Thermal conductivity tests, ultrasonic pulse velocity tests, gas permeability tests and triaxial compression tests are performed on granite samples after a heating and rapid cooling treatment in order to characterize the changes in physical and mechanical properties. Seven levels of temperature (from 25 to 900 °C) are used. It is found that the physical and mechanical properties of granite are significantly deteriorated by the thermal treatment. The porosity shows a significant increase from 1.19% at the initial state to 6.13% for samples heated to 900 °C. The increase in porosity is mainly due to three factors: (1) a large number of microcracks caused by the rapid cooling rate; (2) the mineral transformation of granite through high-temperature heating and water-cooling process; (3) the rapid cooling process causes the mineral particles to weaken. As the temperature of treatment increases, the thermal conductivity and P-wave velocity decrease while the gas permeability increases. Below 200 °C, the elastic modulus and cohesion increase with temperature increasing. Between 200 and 500 °C, the elastic modulus and cohesion have no obvious change with temperature. Beyond 500 °C, as the temperature increases, the elastic modulus and cohesion obviously decrease and the decreasing rate becomes slower with the increase in confining pressure. Poisson’s ratio and internal frictional coefficient have no obvious change as the temperature increases. Moreover, there is a transition from a brittle to ductile behavior when the temperature becomes high. At 900 °C, the granite shows an obvious elastic–plastic behavior.

165 citations

01 Jan 1948
TL;DR: In this paper, a unified theory of plastic buckling applicable to both columns and plates has been developed, and the theory shows that long columns which bend without appreciable twisting require the tangent modulus and that long flanges which twist with no appreciable bending require the secant modulus.
Abstract: On the basis of modern plasticity considerations, a unified theory of plastic buckling applicable to both columns and plates has been developed. For uniform compression, the theory shows that long columns which bend without appreciable twisting require the tangent modulus and that long flanges which twist without appreciable bending require the secant modulus. Structures that both bend and twist when they buckle require a modulus which is a combination of the secant modulus and the tangent modulus.

165 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used nanoindentation to measure the hardness and elastic modulus of Ag3Sn, Cu6Sn5, and Cu3Sn intermetallics, as well as Sn-Ag-Cu solder and pure Sn and Cu.
Abstract: Nanoindentation testing has been used to measure the hardness and elastic modulus of Ag3Sn, Cu6Sn5, and Cu3Sn intermetallics, as well as Sn–Ag–Cu solder and pure Sn and Cu. The intermetallics were fabricated by solid-state annealing of diffusion couples prepared from a substrate (Cu or Ag) and a solder material (Sn or Sn–Ag–Cu solder), providing geometries and length scales as close as possible to a real solder joint. Nanoindentation results for the intermetallics, representing penetration depths of 20–220 nm and loads from 0.7 to 9.5 mN, reveal elastic/plastic deformation without evidence of fracture. Measured hardness values of Cu6Sn5 (6.5 ± 0.3 GPa) and Cu3Sn (6.2 ± 0.4 GPa) indicate a potential for brittle behavior, while Ag3Sn (2.9 ± 0.2 GPa) appears much softer and ductile. Using a bulk Cu6Sn5 sample, Vickers hardness testing revealed an indentation size effect for this compound, with a hardness of 4.3 GPa measured at a load of 9.8 N. An energy balance model is used to explain the dependence of hardness with load or depth, where the observation of an increasing amount of fracture with applied load is identified as the primary mechanism. This result explains discrepancies between nanoindentation and Vickers results previously reported.

165 citations

Journal ArticleDOI
29 May 1996-Langmuir
TL;DR: In this article, the linear viscoelastic properties of the cetyltrimethylammonium tosilate (CTAT)−water system are examined in detail, showing that the system consists of flexible micelles in the slow-breaking limit and exhibits a constant entanglement density along the whole micellar region.
Abstract: In this work, the linear viscoelastic properties of the cetyltrimethylammonium tosilate (CTAT)−water system are examined in detail. This system forms elongated micelles at low and intermediate concentrations, and it yields a hexagonal phase above 27 wt % CTAT at 25 °C. Rheological behavior at low frequencies in a small-amplitude oscillatory shear experiments or at long times in stress relaxation measurements is governed by a single dominant relaxation time, although deviations from the limiting slope of the elastic modulus in the terminal region are observed at high CTAT concentrations. For higher frequencies, however, there is an additional mechanism whose dependence on frequency is analyzed with several rheological models. Analysis of data in terms of the theory of Cates demonstrates that the system consists of flexible micelles in the slow-breaking limit and it exhibits a constant entanglement density along the whole micellar region, even though the average micellar length decreases monotonically with ...

165 citations

Journal ArticleDOI
TL;DR: In this article, the dynamic modulus of asphalt mixture using both two-dimensional and three-dimensional discrete element method (DEM) generated from the X-ray computed tomography (X-ray CT) images was analyzed.
Abstract: The objective of this study is to predict the dynamic modulus of asphalt mixture using both two-dimensional (2D) and three-dimensional (3D) Distinct Element Method (DEM) generated from the X-ray computed tomography (X-ray CT) images. The 3D internal microstructure of the asphalt mixtures (i.e., spatial distribution of aggregate, sand mastic and air voids) was obtained using the X-ray CT. The X-ray CT images provided exact locations of aggregate, sand mastic and air voids to develop 2D and 3D models. An experimental program was developed with a uniaxial compression test to measure the dynamic modulus of sand mastic and asphalt mixtures at different temperatures and loading frequencies. In the DEM simulation, the mastic dynamic modulus and aggregate elastic modulus were used as input parameters to predict the asphalt mixture dynamic modulus. Three replicates of a 3D DEM and six replicates of a 2D DEM were used in the simulation. The strain response of the asphalt concrete under a compressive load was monitored, and the dynamic modulus was computed. The moduli of the 3D DEM and 2D DEM were then compared with both the experimental measurements results. It was revealed that the 3D discrete element models successfully predicted the asphalt mixture dynamic modulus over a range of temperatures and loading frequencies. It was found that 2D discrete element models under predicted the asphalt mixture dynamic modulus.

165 citations


Network Information
Related Topics (5)
Ultimate tensile strength
129.2K papers, 2.1M citations
94% related
Microstructure
148.6K papers, 2.2M citations
87% related
Finite element method
178.6K papers, 3M citations
86% related
Coating
379.8K papers, 3.1M citations
85% related
Amorphous solid
117K papers, 2.2M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023611
20221,303
20211,450
20201,401
20191,447
20181,369