scispace - formally typeset
Search or ask a question
Topic

Elastic modulus

About: Elastic modulus is a research topic. Over the lifetime, 33153 publications have been published within this topic receiving 810247 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: To evaluate the dynamic range of tissue imaged by elastography, the mechanical behavior of breast and prostate tissue samples subject to compression loading has been investigated and the data show that breast fat tissue has a constant modulus over the strain range tested while the other tissues have a modulus that is dependent on the strain level.

1,698 citations

Journal ArticleDOI
TL;DR: In this article, a simple model is constructed to predict the size dependence of the effective stiffness of the structural element, and the important length scale in the problem is identified to be the ratio of the surface elastic modulus to the elastic modulation of the bulk.
Abstract: Effective stiffness properties (D) of nanosized structural elements such as plates and beams differ from those predicted by standard continuum mechanics (Dc). These differences (D-Dc)/Dc depend on the size of the structural element. A simple model is constructed to predict this size dependence of the effective properties. The important length scale in the problem is identified to be the ratio of the surface elastic modulus to the elastic modulus of the bulk. In general, the non-dimensional difference in the elastic properties from continuum predictions (D-Dc)/Dc is found to scale as αS/Eh, where α is a constant which depends on the geometry of the structural element considered, S is a surface elastic constant, E is a bulk elastic modulus and h a length defining the size of the structural element. Thus, the quantity S/E is identified as a material length scale for elasticity of nanosized structures. The model is compared with direct atomistic simulations of nanoscale structures using the embedded atom method for FCC Al and the Stillinger-Weber model of Si. Excellent agreement between the simulations and the model is found.

1,648 citations

Journal ArticleDOI
TL;DR: A new universal anisotropy index is introduced that overcomes the above limitations and is applicable to all types of elastic single crystals, and thus fills an important void in the existing literature.
Abstract: Practically all elastic single crystals are anisotropic, which calls for an appropriate universal measure to quantify the extent of anisotropy. A review of the existing anisotropy measures in the literature leads to a conclusion that they lack universality in the sense that they are nonunique and ignore contributions from the bulk part of the elastic stiffness (or compliance) tensor. Proceeding from extremal principles of elasticity, we introduce a new universal anisotropy index that overcomes the above limitations. Furthermore, we establish special relationships between the proposed anisotropy index and the existing anisotropy measures for special cases. A new elastic anisotropy diagram is constructed for over 100 different crystals (from cubic through triclinic), demonstrating that the proposed anisotropy measure is applicable to all types of elastic single crystals, and thus fills an important void in the existing literature.

1,628 citations

Journal ArticleDOI
TL;DR: In this paper, a microbend test method for determining the plasticity length scale has been developed and described, which involves the bending of a thin annealed foil around a small diameter cylindrical mandril, followed by measurement of the unloaded and loaded radii of curvature.

1,614 citations


Network Information
Related Topics (5)
Ultimate tensile strength
129.2K papers, 2.1M citations
94% related
Microstructure
148.6K papers, 2.2M citations
87% related
Finite element method
178.6K papers, 3M citations
86% related
Coating
379.8K papers, 3.1M citations
85% related
Amorphous solid
117K papers, 2.2M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023611
20221,303
20211,450
20201,401
20191,447
20181,369