scispace - formally typeset
Search or ask a question
Topic

Elastic modulus

About: Elastic modulus is a research topic. Over the lifetime, 33153 publications have been published within this topic receiving 810247 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, diacrylate dopants containing azobenzene moieties were blended with liquid crystalline diadrylate hosts and photopolymerized in a twisted configuration, resulting twisted networks were heavily crosslinked with room temperature elastic moduli on the order of 1 GPa.
Abstract: Well-defined gradients in molecular alignment have been used as tools to generate large amplitude, light-induced deformations in stiff polymer networks. These systems are reversible, monolithic and based on a simple one-step self-assembly process. To fabricate the actuators, diacrylate dopants containing azobenzene moieties were blended with liquid crystalline diacrylate hosts and photopolymerized in a twisted configuration. The resulting twisted networks were heavily crosslinked with room temperature elastic moduli on the order of 1 GPa. Regardless of the temperature with respect to the glass transitions, subsequent exposure to UV radiation induced anisotropic expansion/contraction, and simple variations in geometry were used to generate uniaxial bending or helical coiling deformation modes. Because mechanical energy is directly related to elastic modulus, these systems are expected to provide significantly greater work output than contemporary polymer actuator materials.

310 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of hydrogen on dislocationdislocation and dislocationdashimpurity atom interactions is studied under conditions where hydrogen is in equilibrium with local stresses and in systems where hydrogen increases the shear modulus.
Abstract: The effect of hydrogen on dislocationdashdislocation and dislocationdashimpurity atom interactions is studied under conditions where hydrogen is in equilibrium with local stresses and in systems where hydrogen increases the shear modulus. In the case of two edge dislocations (plane strain) the effect of hydrogen is modeled by a continuous distribution of dilatation lines whose strength depends on the local hydrogen concentration. The hydrogen distribution in the atmospheres is adjusted to minimize the energy of the system as the dislocations approach each other. The iterative finite element analysis used to calculate the hydrogen distribution accounts for the stress relaxation associated with the hydrogen induced volume and the elastic moduli changes due to hydrogen. The interactions between the dislocations are calculated accounting for all the stress fields due to dislocations and hydrogen atmospheres. Modeling of the hydrogen effects on the edge dislocationdashinterstitial solute atom interaction and on the screw dislocationdashinterstitial solute atom interaction is discussed using a finite element analysis and the atom interaction energies are calculated in the presence of hydrogen. For the case where hydrogen increases the shear modulus, a significant hydrogendashrelated decrease of the edge dislocationdashinterstitial solute atom interaction energy was observed when the edge dislocationdashsolute distance is approximately less than two Burgers vectors. Depending on the orientation of the tetragonal axis of the interstitial solute distortion field, hydrogen may strengthen or weaken the interaction between the screw dislocationdashinterstitial solute.

309 citations

Journal ArticleDOI
TL;DR: In this paper, a magnetoactive elastomer made of micronic carbonyl iron particles, structured in elongated clusters, was studied under traction both in static and dynamic modes and the shape of the stress-strain curves were explained by taking into account the existence of a fiber-like structure.
Abstract: A magnetoactive elastomer made of micronic carbonyl iron particles, structured in elongated clusters and embedded in a silicon elastomer matrix is studied under traction both in static and dynamic modes. The application of a magnetic field of 120 kA/m induces a change in elastic moduli of about 0.6 MPa at strains of 4 to 5%. Still higher changes (4 MPa) are observed in dynamic storage modulus at low strains (10-4 to 10-3). The shape of the stress-strain curves are explained by taking into account the existence of a fiber like structure.

308 citations

Journal ArticleDOI
TL;DR: The effects of cholesterol on membrane bending modulus K(C), membrane thickness D(HH), the partial and apparent areas of cholesterol and lipid, and the order parameter S(xray) are shown to depend upon the number of saturated hydrocarbon chains in the lipid molecules.
Abstract: The effects of cholesterol on membrane bending modulus K(C), membrane thickness D(HH), the partial and apparent areas of cholesterol and lipid, and the order parameter S(xray) are shown to depend upon the number of saturated hydrocarbon chains in the lipid molecules. Particularly striking is the result that up to 40% cholesterol does not increase the bending modulus K(C) of membranes composed of phosphatidylcholine lipids with two cis monounsaturated chains, although it does have the expected stiffening effect on membranes composed of lipids with two saturated chains. The B fluctuational modulus in the smectic liquid crystal theory is obtained and used to discuss the interactions between bilayers. Our K(C) results motivate a theory of elastic moduli in the high cholesterol limit and they challenge the relevance of universality concepts. Although most of our results were obtained at 30 degrees C , additional data at other temperatures to allow consideration of a reduced temperature variable do not support universality for the effect of cholesterol on all lipid bilayers. If the concept of universality is to be valid, different numbers of saturated chains must be considered to create different universality classes. The above experimental results were obtained from analysis of x-ray scattering in the low angle and wide angle regions.

306 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that elastic particles present a large excess of vibrational modes at low frequency in comparison with normal solids, called the "boson peak" in the glass literature, and that rigidity is a non-local property of the packing geometry.
Abstract: We poorly understand the properties of amorphous systems at small length scales, where a continuous elastic description breaks down. This is apparent when one considers their vibrational and transport properties, or the way forces propagate in these solids. Little is known about the microscopic cause of their rigidity. Recently it has been observed numerically that an assembly of elastic particles has a critical behavior near the jamming threshold where the pressure vanishes. At the transition such a system does not behave as a continuous medium at any length scales. When this system is compressed, scaling is observed for the elastic moduli, the coordination number, but also for the density of vibrational modes. In the present work, we derive theoretically these results, and show that they apply to various systems such as granular matter and silica, but also to colloidal glasses. In particular we show that: (i) these systems present a large excess of vibrational modes at low frequency in comparison with normal solids, called the "boson peak" in the glass literature. The corresponding modes are very different from plane waves, and their frequency is related to the system coordination; (ii) rigidity is a non-local property of the packing geometry, characterized by a length scale which can be large. For elastic particles this length diverges near the jamming transition; (iii) for repulsive systems the shear modulus can be much smaller than the bulk modulus. We compute the corresponding scaling laws near the jamming threshold. Finally, we discuss the implications of these results for the glass transition, the transport, and the geometry of the random close packing.

306 citations


Network Information
Related Topics (5)
Ultimate tensile strength
129.2K papers, 2.1M citations
94% related
Microstructure
148.6K papers, 2.2M citations
87% related
Finite element method
178.6K papers, 3M citations
86% related
Coating
379.8K papers, 3.1M citations
85% related
Amorphous solid
117K papers, 2.2M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023611
20221,303
20211,450
20201,401
20191,447
20181,369