scispace - formally typeset
Search or ask a question
Topic

Elasticity Imaging Techniques

About: Elasticity Imaging Techniques is a research topic. Over the lifetime, 377 publications have been published within this topic receiving 21988 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Initial results of several phantom and excised animal tissue experiments are reported which demonstrate the ability of this technique to quantitatively image strain and elastic modulus distributions with good resolution, sensitivity and with diminished speckle.

3,636 citations

Journal ArticleDOI
TL;DR: The first in vivo investigations made on healthy volunteers emphasize the potential clinical applicability of SSI for breast cancer detection and results validating SSI in heterogeneous phantoms are presented.
Abstract: Supersonic shear imaging (SSI) is a new ultrasound-based technique for real-time visualization of soft tissue viscoelastic properties. Using ultrasonic focused beams, it is possible to remotely generate mechanical vibration sources radiating low-frequency, shear waves inside tissues. Relying on this concept, SSI proposes to create such a source and make it move at a supersonic speed. In analogy with the "sonic boom" created by a supersonic aircraft, the resulting shear waves will interfere constructively along a Mach cone, creating two intense plane shear waves. These waves propagate through the medium and are progressively distorted by tissue heterogeneities. An ultrafast scanner prototype is able to both generate this supersonic source and image (5000 frames/s) the propagation of the resulting shear waves. Using inversion algorithms, the shear elasticity of medium can be mapped quantitatively from this propagation movie. The SSI enables tissue elasticity mapping in less than 20 ms, even in strongly viscous medium like breast. Modalities such as shear compounding are implementable by tilting shear waves in different directions and improving the elasticity estimation. Results validating SSI in heterogeneous phantoms are presented. The first in vivo investigations made on healthy volunteers emphasize the potential clinical applicability of SSI for breast cancer detection.

2,300 citations

Journal ArticleDOI
29 Sep 1995-Science
TL;DR: The results indicate that displacement patterns corresponding to cyclic displacements smaller than 200 nanometers can be measured and suggest the feasibility of a medical imaging technique for delineating elasticity and other mechanical properties of tissue.
Abstract: A nuclear magnetic resonance imaging (MRI) method is presented for quantitatively mapping the physical response of a material to harmonic mechanical excitation. The resulting images allow calculation of regional mechanical properties. Measurements of shear modulus obtained with the MRI technique in gel materials correlate with independent measurements of static shear modulus. The results indicate that displacement patterns corresponding to cyclic displacements smaller than 200 nanometers can be measured. The findings suggest the feasibility of a medical imaging technique for delineating elasticity and other mechanical properties of tissue.

2,015 citations

Journal ArticleDOI
TL;DR: A physical and mathematical basis of SWEI is presented and some experimental results of pilot studies proving feasibility of this new ultrasonic technology are presented, including a theoretical model of shear oscillations in soft biological tissue remotely induced by the radiation force of focused ultrasound.
Abstract: Shear wave elasticity imaging (SWEI) is a new approach to imaging and characterizing tissue structures based on the use of shear acoustic waves remotely induced by the radiation force of a focused ultrasonic beam. SWEI provides the physician with a virtual "finger" to probe the elasticity of the internal regions of the body. In SWEI, compared to other approaches in elasticity imaging, the induced strain in the tissue can be highly localized, because the remotely induced shear waves are attenuated fully within a very limited area of tissue in the vicinity of the focal point of a focused ultrasound beam. SWEI may add a new quality to conventional ultrasonic imaging or magnetic resonance imaging. Adding shear elasticity data ("palpation information") by superimposing color-coded elasticity data over ultrasonic or magnetic resonance images may enable better differentiation of tissues and further enhance diagnosis. This article presents a physical and mathematical basis of SWEI with some experimental results of pilot studies proving feasibility of this new ultrasonic technology. A theoretical model of shear oscillations in soft biological tissue remotely induced by the radiation force of focused ultrasound is described. Experimental studies based on optical and magnetic resonance imaging detection of these shear waves are presented. Recorded spatial and temporal profiles of propagating shear waves fully confirm the results of mathematical modeling. Finally, the safety of the SWEI method is discussed, and it is shown that typical ultrasonic exposure of SWEI is significantly below the threshold of damaging effects of focused ultrasound.

1,632 citations

Journal ArticleDOI
TL;DR: Some of the previous work done in the related field of biomechanics is surveyed, and a lexicography for elastic imaging is introduced, hoped that this nomenclature will provide a meaningful categorization of various approaches and will make evident the inherent parameters displayed and conditions applied in deriving the resulting images.
Abstract: Recently, a number of methods have been developed that make it possible to image the elastic properties of soft tissues. Because certain types of tissues such as malignant lesions, for example, have elastic properties that are markedly different from surrounding tissues, elasticity imaging could provide a significant adjunct to current diagnostic ultrasonic methods. Further, elasticity imaging techniques could be used to augment the study of tissues that change their elastic properties, such as skeletal and cardiac muscle. In this paper, we survey some of the previous work done in the related field of biomechanics, and we review measurement techniques from the 1950s to the 1980s. Different approaches to elastic imaging and signal processing are then discussed and a lexicography for elastic imaging is introduced. It is hoped that this nomenclature will provide a meaningful categorization of various approaches and will make evident the inherent parameters displayed and conditions applied in deriving the resulting images. Key assumptions and signal processing approaches are also reviewed. Finally, directions for future work are suggested.

529 citations


Network Information
Related Topics (5)
Magnetic resonance imaging
61K papers, 1.5M citations
79% related
Diffusion MRI
13.3K papers, 563.2K citations
76% related
Blood flow
27.6K papers, 735.5K citations
75% related
Image quality
52.7K papers, 787.9K citations
74% related
Iterative reconstruction
41.2K papers, 841.1K citations
74% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20213
20209
201918
201815
201730
201648