Topic

# Electric field

About: Electric field is a research topic. Over the lifetime, 87182 publications have been published within this topic receiving 1428292 citations.

##### Papers published on a yearly basis

##### Papers

More filters

••

TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.

Abstract: We describe monocrystalline graphitic films, which are a few atoms thick but are nonetheless stable under ambient conditions, metallic, and of remarkably high quality. The films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands, and they exhibit a strong ambipolar electric field effect such that electrons and holes in concentrations up to 10 13 per square centimeter and with room-temperature mobilities of ∼10,000 square centimeters per volt-second can be induced by applying gate voltage.

55,532 citations

••

TL;DR: The discovery of ferroelectricity in a perovskite manganite, TbMnO3, where the effect of spin frustration causes sinusoidal antiferromagnetic ordering and gigantic magnetoelectric and magnetocapacitance effects are found.

Abstract: The magnetoelectric effect--the induction of magnetization by means of an electric field and induction of polarization by means of a magnetic field--was first presumed to exist by Pierre Curie, and subsequently attracted a great deal of interest in the 1960s and 1970s (refs 2-4). More recently, related studies on magnetic ferroelectrics have signalled a revival of interest in this phenomenon. From a technological point of view, the mutual control of electric and magnetic properties is an attractive possibility, but the number of candidate materials is limited and the effects are typically too small to be useful in applications. Here we report the discovery of ferroelectricity in a perovskite manganite, TbMnO3, where the effect of spin frustration causes sinusoidal antiferromagnetic ordering. The modulated magnetic structure is accompanied by a magnetoelastically induced lattice modulation, and with the emergence of a spontaneous polarization. In the magnetic ferroelectric TbMnO3, we found gigantic magnetoelectric and magnetocapacitance effects, which can be attributed to switching of the electric polarization induced by magnetic fields. Frustrated spin systems therefore provide a new area to search for magnetoelectric media.

3,769 citations

•

30 Oct 2012

TL;DR: In this article, Rozhansky et al. studied the relationship between transverse conductivity and the generation of self-consistent electric fields in strongly ionized magnetized plasma.

Abstract: Mechanisms of transverse conductivity and generation of self-consistent electric fields in strongly ionized magnetized plasma V. Rozhansky. 1. Introduction.- 2. Conductivity tensor in partially ionized plasma.- 3. Main mechanisms of perpendicular conductivity in fully ionized plasma.- 4. Acceleration of plasma clouds in an inhomogeneous magnetic field.- 5. Alfven conductivity.- 6. Perpendicular viscosity, radial current, and radial electric field in an infinite cylinder.- 7. Current systems in front of a biased electrode (flush-mounted probe) and spot of emission.- 8. Currents in the vicinity of a biased electrode that is smaller than the ion gyroradius.- 9. Neoclassical perpendicular conductivity in a tokamak.- 10. Transverse conductivity in a reversed field pinch.- 11. Modeling of electric field and currents in the tokamak edge plasma.- 12. Mechanisms of anomalous perpendicular viscosity and viscosity-driven currents.- 13. Transverse conductivity in a stochastic magnetic field.- 14. Electric fields generated in the shielding layer between hot plasma and a solid state.-- Correlations and anomalous transport models O.G. Bakunin. 1. Introduction.- 2. Turbulent diffusion and transport.- 3. Non-local effects and diffusion equations.- 4. The Corrsin conjecture.- 5. Effects of seed diffusivity.- 6. The diffusive tracer equation and averaging.- 7. The quasi-linear approximation.- 8. The diffusive renormalization.- 9. Anomalous transport and convective cells.- 10. Stochastic instability and transport.- 11. Fractal conceptions and turbulence.- 12. Percolation and scalings.- 13. Percolation and turbulent transport scalings.- 14. The temporal hierarchy of scales and correlations.- 15. The stochastic magnetic field and percolation transport.- 16. Percolation in drift flows.- 17. Multiscale flows.- 18. Subdiffusion and traps.- 19. Continuous time random walks.- 20. Fractional differential equations and scalings.- 21. Correlation and phase-space.- 22. Conclusion.

3,684 citations

••

TL;DR: In this article, it was shown that a conical interface between two fluids can exist in equilibrium in an electric field, but only when the cone has a semi-vertical angle 49.3$^\circ$.

Abstract: The disintegration of drops in strong electric fields is believed to play an important part in the formation of thunderstorms, at least in those parts of them where no ice crystals are present. Zeleny showed experimentally that disintegration begins as a hydrodynamical instability, but his ideas about the mechanics of the situation rest on the implicit assumption that instability occurs when the internal pressure is the same as that outside the drop. It is shown that this assumption is false and that instability of an elongated drop would not occur unless a pressure difference existed. When this error is corrected it is found that a drop, elongated by an electric field, becomes unstable when its length is 1.9 times its equatorial diameter, and the calculated critical electric field agrees with laboratory experiments to within 1%. When the drop becomes unstable the ends develop obtuse-angled conical points from which axial jets are projected but the stability calculations give no indication of the mechanics of this process. It is shown theoretically that a conical interface between two fluids can exist in equilibrium in an electric field, but only when the cone has a semi-vertical angle 49.3$^\circ$. Apparatus was constructed for producing the necessary field, and photographs show that conical oil/water interfaces and soap films can be produced at the caloulated voltage and that their semi-vertical angles are very close to 49.3$^\circ$. The photographs give an indication of how the axial jets are produced but no complete analytical description of the process is attempted.

2,994 citations