scispace - formally typeset
Search or ask a question

Showing papers on "Electric field published in 2014"


Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate few-layer black phosphorus field effect devices on Si/SiO2 and measure charge carrier mobility in a four-probe configuration as well as drain current modulation in a two-point configuration.
Abstract: Black phosphorus exhibits a layered structure similar to graphene, allowing mechanical exfoliation of ultrathin single crystals. Here, we demonstrate few-layer black phosphorus field effect devices on Si/SiO2 and measure charge carrier mobility in a four-probe configuration as well as drain current modulation in a two-point configuration. We find room-temperature mobilities of up to 300 cm2/Vs and drain current modulation of over 103. At low temperatures, the on-off ratio exceeds 105, and the device exhibits both electron and hole conduction. Using atomic force microscopy, we observe significant surface roughening of thin black phosphorus crystals over the course of 1 h after exfoliation.

1,165 citations


Journal ArticleDOI
TL;DR: A few-layer black phosphorus field effect devices on Si/SiO$_2$ and measure charge carrier mobility in a four-probe configuration as well as drain current modulation in a two-point configuration are presented in this paper.
Abstract: Black phosphorus exhibits a layered structure similar to graphene, allowing mechanical exfoliation of ultrathin single crystals. Here we demonstrate few-layer black phosphorus field effect devices on Si/SiO$_2$ and measure charge carrier mobility in a four-probe configuration as well as drain current modulation in a two-point configuration. We find room-temperature mobilities of up to 300 cm$^2$/Vs and drain current modulation of over 10$^3$. At low temperatures the on-off ratio exceeds 10$^5$ and the device exhibits both electron and hole conduction. Using atomic force microscopy we observe significant surface roughening of thin black phosphorus crystals over the course of 1 hour after exfoliation.

1,019 citations


Journal ArticleDOI
31 Jan 2014-Science
TL;DR: The time dependence of the separation of photogenerated electron hole pairs across the donor-acceptor heterojunction in OPV model systems is reported, consistent with charge separation through access to delocalized π-electron states in ordered regions of the fullerene acceptor material.
Abstract: Understanding the charge-separation mechanism in organic photovoltaic cells (OPVs) could facilitate optimization of their overall efficiency. Here we report the time dependence of the separation of photogenerated electron hole pairs across the donor-acceptor heterojunction in OPV model systems. By tracking the modulation of the optical absorption due to the electric field generated between the charges, we measure ~200 millielectron volts of electrostatic energy arising from electron-hole separation within 40 femtoseconds of excitation, corresponding to a charge separation distance of at least 4 nanometers. At this separation, the residual Coulomb attraction between charges is at or below thermal energies, so that electron and hole separate freely. This early time behavior is consistent with charge separation through access to delocalized π-electron states in ordered regions of the fullerene acceptor material.

801 citations


Journal ArticleDOI
TL;DR: For a wide range of photovoltaic devices based on polymer:fullerene, small-molecule:C60 and polymer:polymer blends, the study reveals that the internal quantum efficiency is essentially independent of whether or not D, A or CT states with an energy higher than that of CT1 are excited.
Abstract: Interfaces between organic electron-donating (D) and electron-accepting (A) materials have the ability to generate charge carriers on illumination. Efficient organic solar cells require a high yield for this process, combined with a minimum of energy losses. Here, we investigate the role of the lowest energy emissive interfacial charge-transfer state (CT1) in the charge generation process. We measure the quantum yield and the electric field dependence of charge generation on excitation of the charge-transfer (CT) state manifold via weakly allowed, low-energy optical transitions. For a wide range of photovoltaic devices based on polymer:fullerene, small-molecule:C60 and polymer:polymer blends, our study reveals that the internal quantum efficiency (IQE) is essentially independent of whether or not D, A or CT states with an energy higher than that of CT1 are excited. The best materials systems show an IQE higher than 90% without the need for excess electronic or vibrational energy.

685 citations


Journal ArticleDOI
06 Jun 2014-Science
TL;DR: The hyperfine interaction in a terbium bisphthalocyanine complex is modulated using electric fields to manipulate nuclear spin, and the hyperfine Stark effect is used as a magnetic field transducer at the atomic level.
Abstract: Recent advances in addressing isolated nuclear spins have opened up a path toward using nuclear-spin–based quantum bits. Local magnetic fields are normally used to coherently manipulate the state of the nuclear spin; however, electrical manipulation would allow for fast switching and spatially confined spin control. Here, we propose and demonstrate coherent single nuclear spin manipulation using electric fields only. Because there is no direct coupling between the spin and the electric field, we make use of the hyperfine Stark effect as a magnetic field transducer at the atomic level. This quantum-mechanical process is present in all nuclear spin systems, such as phosphorus or bismuth atoms in silicon, and offers a general route toward the electrical control of nuclear-spin–based devices.

660 citations


Journal ArticleDOI
18 Dec 2014-Nature
TL;DR: The kinetics of the switching process is examined, something not considered previously in theoretical work, and a deterministic reversal of the DM vector and canted moment using an electric field at room temperature is shown.
Abstract: The technological appeal of multiferroics is the ability to control magnetism with electric field1, 2, 3. For devices to be useful, such control must be achieved at room temperature. The only single-phase multiferroic material exhibiting unambiguous magnetoelectric coupling at room temperature is BiFeO3 (refs 4 and 5). Its weak ferromagnetism arises from the canting of the antiferromagnetically aligned spins by the Dzyaloshinskii–Moriya (DM) interaction6, 7, 8, 9. Prior theory considered the symmetry of the thermodynamic ground state and concluded that direct 180-degree switching of the DM vector by the ferroelectric polarization was forbidden10, 11. Instead, we examined the kinetics of the switching process, something not considered previously in theoretical work10, 11, 12. Here we show a deterministic reversal of the DM vector and canted moment using an electric field at room temperature. First-principles calculations reveal that the switching kinetics favours a two-step switching process. In each step the DM vector and polarization are coupled and 180-degree deterministic switching of magnetization hence becomes possible, in agreement with experimental observation. We exploit this switching to demonstrate energy-efficient control of a spin-valve device at room temperature. The energy per unit area required is approximately an order of magnitude less than that needed for spin-transfer torque switching13, 14. Given that the DM interaction is fundamental to single-phase multiferroics and magnetoelectrics3, 9, our results suggest ways to engineer magnetoelectric switching and tailor technologically pertinent functionality for nanometre-scale, low-energy-consumption, non-volatile magnetoelectronics.

591 citations


Journal ArticleDOI
TL;DR: In this paper, the pyroelectric effect and potential thermal and electric field cycles for energy harvesting are explored, as well as pyro-electric architectures and systems that can be employed to improve device performance.
Abstract: This review covers energy harvesting technologies associated with pyroelectric materials and systems. Such materials have the potential to generate electrical power from thermal fluctuations and is a less well explored form of thermal energy harvesting than thermoelectric systems. The pyroelectric effect and potential thermal and electric field cycles for energy harvesting are explored. Materials of interest are discussed and pyroelectric architectures and systems that can be employed to improve device performance, such as frequency and power level, are described. In addition to the solid materials employed, the appropriate pyroelectric harvesting circuits to condition and store the electrical power are discussed.

589 citations


Journal ArticleDOI
24 Oct 2014-Science
TL;DR: In this article, a nonlocal voltage at zero magnetic field in a narrow energy range near Dirac points at distances as large as several micrometers away from the nominal current path was observed, indicating large valley-Hall angles.
Abstract: Topological materials may exhibit Hall-like currents flowing transversely to the applied electric field even in the absence of a magnetic field. In graphene superlattices, which have broken inversion symmetry, topological currents originating from graphene’s two valleys are predicted to flow in opposite directions and combine to produce long-range charge neutral flow. We observed this effect as a nonlocal voltage at zero magnetic field in a narrow energy range near Dirac points at distances as large as several micrometers away from the nominal current path. Locally, topological currents are comparable in strength with the applied current, indicating large valley-Hall angles. The long-range character of topological currents and their transistor-like control by means of gate voltage can be exploited for information processing based on valley degrees of freedom.

574 citations


Journal ArticleDOI
TL;DR: The fabrication of graphene nanoribbon heterojunctions and heterostructures by combining pristine hydrocarbon precursors with their nitrogen-substituted equivalents are reported, and it is shown that these materials bear a high potential for applications in photovoltaics and electronics.
Abstract: p–n junctions are formed in heterostructures made of pristine and nitrogen-doped graphene nanoribbons. Despite graphene's remarkable electronic properties1,2, the lack of an electronic bandgap severely limits its potential for applications in digital electronics3,4. In contrast to extended films, narrow strips of graphene (called graphene nanoribbons) are semiconductors through quantum confinement5,6, with a bandgap that can be tuned as a function of the nanoribbon width and edge structure7,8,9,10. Atomically precise graphene nanoribbons can be obtained via a bottom-up approach based on the surface-assisted assembly of molecular precursors11. Here we report the fabrication of graphene nanoribbon heterojunctions and heterostructures by combining pristine hydrocarbon precursors with their nitrogen-substituted equivalents. Using scanning probe methods, we show that the resulting heterostructures consist of seamlessly assembled segments of pristine (undoped) graphene nanoribbons (p-GNRs) and deterministically nitrogen-doped graphene nanoribbons (N-GNRs), and behave similarly to traditional p–n junctions12. With a band shift of 0.5 eV and an electric field of 2 × 108 V m–1 at the heterojunction, these materials bear a high potential for applications in photovoltaics and electronics.

515 citations


Journal ArticleDOI
TL;DR: In this paper, a model describing the molecular orientation disorder in CH3NH3PbI3, solving a classical Hamiltonian parametrised with electronic structure calculations, with the nature of the motions informed by ab initio molecular dynamics.
Abstract: We report a model describing the molecular orientation disorder in CH3NH3PbI3, solving a classical Hamiltonian parametrised with electronic structure calculations, with the nature of the motions informed by ab initio molecular dynamics. We investigate the temperature and static electric field dependence of the equilibrium ferroelectric (molecular) domain structure and resulting polarisability. A rich domain structure of twinned molecular dipoles is observed, strongly varying as a function of temperature and applied electric field. We propose that the internal electrical fields associated with microscopic polarisation domains contribute to hysteretic anomalies in the current-voltage response of hybrid organic-inorganic perovskite solar cells due to variations in electron-hole recombination in the bulk.

512 citations


Journal ArticleDOI
TL;DR: A strong quadratic shift of the transition frequencies as a function of applied electric field shows the strongly dipolar character of the RbCs ground-state molecule.
Abstract: We produce ultracold dense trapped samples of ^{87}Rb^{133}Cs molecules in their rovibrational ground state, with full nuclear hyperfine state control, by stimulated Raman adiabatic passage (STIRAP) with efficiencies of 90%. We observe the onset of hyperfine-changing collisions when the magnetic field is ramped so that the molecules are no longer in the hyperfine ground state. A strong quadratic shift of the transition frequencies as a function of applied electric field shows the strongly dipolar character of the RbCs ground-state molecule. Our results open up the prospect of realizing stable bosonic dipolar quantum gases with ultracold molecules.

Journal ArticleDOI
TL;DR: In this article, a small electric field is used to switch a FeRh thin film from anti-to ferromagnetic above room temperature, by taking advantage of the strong magnetoelectric coupling with a BaTiO3 substrate.
Abstract: Electric-field-induced switching of material’s magnetization is a promising approach for achieving energy-efficient memory devices. By taking advantage of the strong magnetoelectric coupling with a BaTiO3 substrate, a small electric field is used to switch a FeRh thin film from anti- to ferromagnetic above room temperature.

Journal ArticleDOI
TL;DR: Using fully kinetic simulations, it is demonstrated that magnetic reconnection in relativistic plasmas is highly efficient at accelerating particles through a first-order Fermi process resulting from the curvature drift of particles in the direction of the electric field induced by the relatIVistic flows.
Abstract: Using fully kinetic simulations, we demonstrate that magnetic reconnection in relativistic plasmas is highly efficient at accelerating particles through a first-order Fermi process resulting from the curvature drift of particles in the direction of the electric field induced by the relativistic flows. This mechanism gives rise to the formation of hard power-law spectra in parameter regimes where the energy density in the reconnecting field exceeds the rest mass energy density σ ≡ B(2)/(4πnm(e)c(2))>1 and when the system size is sufficiently large. In the limit σ ≫ 1, the spectral index approaches p = 1 and most of the available energy is converted into nonthermal particles. A simple analytic model is proposed which explains these key features and predicts a general condition under which hard power-law spectra will be generated from magnetic reconnection.

Journal Article
TL;DR: Ferroelectricity in BaTiO3 crystals is used to tune the sharp metamagnetic transition temperature of epitaxially grown FeRh films and electrically drive a transition between antiferromagnetic and ferromagnetic order with only a few volts, just above room temperature, correspond to a magnetoelectric coupling larger than previous reports by at least one order of magnitude.
Abstract: Controlling magnetism by means of electric fields is a key issue for the future development of low-power spintronics1. Progress has been made in the electrical control of magnetic anisotropy2, domain structure3,4, spin polarization5,6 or critical temperatures7,8. However, the ability to turn on and o robust ferromagnetism at room temperature and above has remained elusive. Here we use ferroelectricity in BaTiO3 crystals to tune the sharp metamagnetic transition temperature of epitaxially grown FeRh films and electrically drive a transition between antiferromagnetic and ferromagnetic order with only a few volts, just above room temperature. The detailed analysis of the data in the light of first-principles calculations indicate that the phenomenon is mediated by both strain and field e ects from the BaTiO3. Our results correspond to a magnetoelectric coupling larger than previous reports by at least one order of magnitude and open new perspectives for the use of ferroelectrics in magnetic storage and spintronics.

Journal ArticleDOI
TL;DR: In this paper, it was shown that applying a local magnetic field parallel to an injected current induces a valley imbalance that diffuses over long distances, and a probe magnetic field can then convert this imbalance into a measurable voltage drop far from source and drain.
Abstract: Weyl semimetals are three-dimensional crystalline systems where pairs of bands touch at points in momentum space, termed Weyl nodes, that are characterized by a definite topological charge: the chirality. Consequently, they exhibit the Adler-Bell-Jackiw anomaly, which in this condensed-matter realization implies that the application of parallel electric (E) and magnetic (B) fields pumps electrons between nodes of opposite chirality at a rate proportional to E⋅B. We argue that this pumping is measurable via nonlocal transport experiments, in the limit of weak internode scattering. Specifically, we show that as a consequence of the anomaly, applying a local magnetic field parallel to an injected current induces a valley imbalance that diffuses over long distances. A probe magnetic field can then convert this imbalance into a measurable voltage drop far from source and drain. Such nonlocal transport vanishes when the injected current and magnetic field are orthogonal and therefore serves as a test of the chiral anomaly. We further demonstrate that a similar effect should also characterize Dirac semimetals—recently reported to have been observed in experiments—where the coexistence of a pair of Weyl nodes at a single point in the Brillouin zone is protected by a crystal symmetry. Since the nodes are analogous to valley degrees of freedom in semiconductors, the existence of the anomaly suggests that valley currents in three-dimensional topological semimetals can be controlled using electric fields, which has potential practical “valleytronic” applications.

Journal ArticleDOI
TL;DR: This work predicts a continuous transition from the normal insulator to a topological insulator and eventually to a metal as a function of F⊥ on few-layer phosphorene, and opens the possibility of converting normal insulators into topological ones via electric field and making a multifunctional "field effect topological transistor" that could manipulate simultaneously both spin and charge carrier.
Abstract: Phosphorene is a novel two-dimensional material that can be isolated through mechanical exfoliation from layered black phosphorus, but unlike graphene and silicene, monolayer phosphorene has a large band gap. It was thus unsuspected to exhibit band inversion and the ensuing topological insulator behavior. It has recently attracted interest because of its proposed application as field effect transistors. Using first-principles calculations with applied perpendicular electric field F we predict a continuous transition from the normal insulator to a topological insulator and eventually to a metal as a function of F. The continuous tuning of topological behavior with electric field would lead to spin-separated, gapless edge states, i.e., quantum spins Hall effect. This finding opens the possibility of converting normal insulating materials into topological ones via electric field, and making a multi-functional field effect topological transistor that could manipulate simultaneously both spins and charge carrier.

Journal ArticleDOI
TL;DR: In this paper, the authors show that electrical switching of the interfacial oxidation state allows for voltage control of magnetic properties to an extent never before achieved through conventional magnetoelectric coupling mechanisms.
Abstract: In metal/oxide heterostructures, rich chemical, electronic, magnetic and mechanical properties can emerge from interfacial chemistry and structure. The possibility to dynamically control interface characteristics with an electric field paves the way towards voltage control of these properties in solid-state devices. Here we show that electrical switching of the interfacial oxidation state allows for voltage control of magnetic properties to an extent never before achieved through conventional magnetoelectric coupling mechanisms. We directly observe, for the first time, in situ voltage driven O$^{2-}$ migration in a Co/metal-oxide bilayer, which we use to toggle the interfacial magnetic anisotropy energy by >0.6 erg/cm$^2$. We exploit the thermally-activated nature of ion migration to dramatically increase the switching efficiency and to demonstrate reversible patterning of magnetic properties through local activation of ionic migration. These results suggest a path towards voltage-programmable materials based on solid-state switching of interface oxygen chemistry.

Journal ArticleDOI
TL;DR: Kelvin probe force microscopy is used to study the real-space cross-sectional distribution of the internal potential within high efficiency mesoscopic methylammonium lead tri-iodide solar cells and shows that the electric field is homogeneous through these devices, similar to that of a p-i-n type junction.
Abstract: Perovskite-sensitized solar cells have reached power conversion efficiencies comparable to commercially available solar cells used for example in solar farms. In contrast to silicon solar cells, perovskite-sensitized solar cells can be made by solution processes from inexpensive materials. The power conversion efficiency of these cells depends substantially on the charge transfer at interfaces. Here we use Kelvin probe force microscopy to study the real-space cross-sectional distribution of the internal potential within high efficiency mesoscopic methylammonium lead tri-iodide solar cells. We show that the electric field is homogeneous through these devices, similar to that of a p-i-n type junction. On illumination under short-circuit conditions, holes accumulate in front of the hole-transport layer as a consequence of unbalanced charge transport in the device. After light illumination, we find that trapped charges remain inside the active device layers. Removing these traps and the unbalanced charge injection could enable further improvements in performance of perovskite-sensitized solar cells.

Journal ArticleDOI
TL;DR: It is demonstrated that magnetic properties of ultrathin Co films adjacent to Gd2O3 gate oxides can be directly manipulated by voltage, opening a new route to achieve ultralow energy magnetization manipulation in spintronic devices.
Abstract: We demonstrate that magnetic properties of ultrathin Co films adjacent to Gd2O3 gate oxides can be directly manipulated by voltage. The Co films can be reversibly changed from an optimally oxidized state with a strong perpendicular magnetic anisotropy to a metallic state with an in-plane magnetic anisotropy or to an oxidized state with nearly zero magnetization, depending on the polarity and time duration of the applied electric fields. Consequently, an unprecedentedly large change of magnetic anisotropy energy up to 0.73 erg/cm(2) has been realized in a nonvolatile manner using gate voltages of only a few volts. These results open a new route to achieve ultralow energy magnetization manipulation in spintronic devices.

Journal ArticleDOI
TL;DR: It is shown that when interflake interactions are sufficiently weak, both the degree of microscopic ordering and the direction of macroscopic alignment of GO liquid crystals (LCs) can be readily controlled by applying low electric fields.
Abstract: The sensitive response of the nematic graphene oxide (GO) phase to external stimuli makes this phase attractive for extending the applicability of GO and reduced GO to solution processes and electro-optic devices. However, contrary to expectations, the alignment of nematic GO has been difficult to control through the application of electric fields or surface treatments. Here, we show that when interflake interactions are sufficiently weak, both the degree of microscopic ordering and the direction of macroscopic alignment of GO liquid crystals (LCs) can be readily controlled by applying low electric fields. We also show that the large polarizability anisotropy of GO and Onsager excluded-volume effect cooperatively give rise to Kerr coefficients that are about three orders of magnitude larger than the maximum value obtained so far in molecular LCs. The extremely large Kerr coefficient allowed us to fabricate electro-optic devices with macroscopic electrodes, as well as well-aligned, defect-free GO over wide areas.

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate a spin-coupled valley photocurrent, within an electric double-layer transistor based on WSe2, whose direction and magnitude depend on the degree of circular polarization of the incident radiation and can be further modulated with an external electric field.
Abstract: The valley degree of freedom in layered transition-metal dichalcogenides provides an opportunity to extend the functionalities of spintronics and valleytronics devices. The achievement of spin-coupled valley polarization induced by the non-equilibrium charge-carrier imbalance between two degenerate and inequivalent valleys has been demonstrated theoretically and by optical experiments. However, the generation of a valley and spin current with the valley polarization in transition-metal dichalcogenides remains elusive. Here we demonstrate a spin-coupled valley photocurrent, within an electric-double-layer transistor based on WSe2, whose direction and magnitude depend on the degree of circular polarization of the incident radiation and can be further modulated with an external electric field. This room-temperature generation and electric control of a valley and spin photocurrent provides a new property of electrons in transition-metal dichalcogenide systems, and thereby enables additional degrees of control for quantum-confined spintronic devices. A spin- and valley-polarized photocurrent is generated, in an electric double-layer transistor, with a direction and magnitude that depends on the degree of circular polarization of the incident radiation and on an external electric field.

Journal ArticleDOI
21 Mar 2014-Science
TL;DR: The results show that it is possible to directly manipulate atomic-scale magnetic structures with the electric field of light on a sub-picosecond time scale.
Abstract: Multiferroics have attracted strong interest for potential applications where electric fields control magnetic order. The ultimate speed of control via magnetoelectric coupling, however, remains largely unexplored. Here, we report an experiment in which we drove spin dynamics in multiferroic TbMnO3 with an intense few-cycle terahertz (THz) light pulse tuned to resonance with an electromagnon, an electric-dipole active spin excitation. We observed the resulting spin motion using time-resolved resonant soft x-ray diffraction. Our results show that it is possible to directly manipulate atomic-scale magnetic structures with the electric field of light on a sub-picosecond time scale.

Journal ArticleDOI
TL;DR: In this paper, LiPF6 in EC:DMC by light microscopy was used to study the growth and electrodissolution of single lithium filaments, where the growth areas could be identified in detail: the lithium wires can grow either from the substrate-lithium interface, at kinks or in a region at or close to the tip.

Journal ArticleDOI
TL;DR: In this article, the authors proposed an approach for the measurement of electric fields based on the interaction of radio frequency (RF) fields with alkali atoms excited to Rydberg states via the Autler-Townes effect and detect the splitting via electromagnetically induced transparency.
Abstract: We discuss a fundamentally new approach for the measurement of electric fields that will lead to the develop- mentofabroadband,directSI-traceable,compact,self-calibrating -field probe (sensor). This approach is based on the interaction of radio frequency (RF) fields with alkali atoms excited to Rydberg states. The RF field causes an energy splitting of the Rydberg states via the Autler-Townes effect and we detect the splitting via electromagnetically induced transparency. In effect, alkali atoms placed in a vapor cell act like an RF-to-optical transducer, converting an RF -field strength measurement to an optical frequency measurement. We demonstrate the broadband nature of this approach by showing that one small vapor cell can be used to measure -field strengths over a wide range of frequencies: 1 GHz to 500 GHz. The technique is validated by comparing experimental data to both numerical simulations and far-field calculations for various frequencies. We also discuss various applications, including: a direct traceable measurement, the ability to measure both weak and strong field strengths, compact form factors of the probe, and sub-wavelength imaging and field mapping. Index Terms—Atom based metrology, Autler-Townes splitting, broadband sensor and probe, electrical field measurements and sensor, electromagnetically induced transparency (EIT), Rydberg atoms, sub-wavelength imaging.

Journal ArticleDOI
TL;DR: A simplified quantum theoretical interpretation of DPC is presented, which enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright-field detectors.
Abstract: By focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field-induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright-field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO3 yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms.

Journal ArticleDOI
TL;DR: In this paper, the acceleration in the magnetic reconnection of electron-positron plasmas is studied by using a particle-in-cell simulation, and it is found that a significantly large number of nonthermal particles are generated by the inductive electric fields around an X-type neutral line when the reconnection outflow velocity, which is known to be an Alfv\'{e}n velocity, is on the order of the speed of light.
Abstract: Particle acceleration in the magnetic reconnection of electron-positron plasmas is studied by using a particle-in-cell simulation. It is found that a significantly large number of nonthermal particles are generated by the inductive electric fields around an X-type neutral line when the reconnection outflow velocity, which is known to be an Alfv\'{e}n velocity, is on the order of the speed of light. In such a relativistic reconnection regime, we also find that electrons and positrons form a power-law-like energy distribution through their drift along the reconnection electric field under the relativistic Speiser motion. A brief discussion of the relevance of these results to the current sheet structure, which has an antiparallel magnetic field in astrophysical sources of synchrotron radiation, is presented.

Journal ArticleDOI
TL;DR: The electric field potential, electric field and magnetic field in the form of traveling wave solutions for the two-dimensional ZK equation are found by applying the extended direct algebraic method and the efficiency of the method can be demonstrated.
Abstract: The Zakharov-Kuznetsov (ZK) equation is an isotropic nonlinear evolution equation, first derived for weakly nonlinear ion-acoustic waves in a strongly magnetized lossless plasma in two dimensions. In the present study, by applying the extended direct algebraic method, we found the electric field potential, electric field and magnetic field in the form of traveling wave solutions for the two-dimensional ZK equation. The solutions for the ZK equation are obtained precisely and the efficiency of the method can be demonstrated. The stability of these solutions and the movement role of the waves are analyzed by making graphs of the exact solutions.

Journal ArticleDOI
TL;DR: Transformation from a film into a sphere, rapid merging of separate objects, controlled self-rotation, and planar locomotion are the very unusual phenomena observed in liquid metals under application of an electric field to a liquid metal immersed in or sprayed with water.
Abstract: Transformation from a film into a sphere, rapid merging of separate objects, controlled self-rotation, and planar locomotion are the very unusual phenomena observed in liquid metals under application of an electric field to a liquid metal immersed in or sprayed with water. A mechanism for these effects is suggested and potential applications - for example the recovery of liquid metal previously injected into the body for therapeutic purposes - are outlined.

Journal ArticleDOI
TL;DR: In this paper, the curvature drift and the parallel electric field dominate the dynamics and drive parallel heating, and an upper limit on electron energy gain is obtained by balancing reconnection drive with radiative loss.
Abstract: The heating of electrons in collisionless magnetic reconnection is explored in particle-in-cell simulations with non-zero guide fields so that electrons remain magnetized. In this regime, electric fields parallel to B accelerate particles directly, while those perpendicular to B do so through gradient-B and curvature drifts. The curvature drift drives parallel heating through Fermi reflection, while the gradient B drift changes the perpendicular energy through betatron acceleration. We present simulations in which we evaluate each of these mechanisms in space and time in order to quantify their role in electron heating. For a case with a small guide field (20% of the magnitude of the reconnecting component), the curvature drift is the dominant source of electron heating. However, for a larger guide field (equal to the magnitude of the reconnecting component) electron acceleration by the curvature drift is comparable to that of the parallel electric field. In both cases, the heating by the gradient B drift is negligible in magnitude. It produces net cooling because the conservation of the magnetic moment and the drop of B during reconnection produce a decrease in the perpendicular electron energy. Heating by the curvature drift dominates in the outflow exhausts where bent field lines expand to relax their tension and is therefore distributed over a large area. In contrast, the parallel electric field is localized near X-lines. This suggests that acceleration by parallel electric fields may play a smaller role in large systems where the X-line occupies a vanishing fraction of the system. The curvature drift and the parallel electric field dominate the dynamics and drive parallel heating. A consequence is that the electron energy spectrum becomes extremely anisotropic at late time, which has important implications for quantifying the limits of electron acceleration due to synchrotron emission. An upper limit on electron energy gain that is substantially higher than earlier estimates is obtained by balancing reconnection drive with radiative loss.

Journal ArticleDOI
TL;DR: In this paper, the authors derived a gyrophase-averaged transport equation for particles experiencing pitch-angle scattering and energization in a super-Alfvenic flowing plasma experiencing multiple small-scale reconnection events.
Abstract: An emerging paradigm for the dissipation of magnetic turbulence in the supersonic solar wind is via localized small-scale reconnection processes, essentially between quasi-2D interacting magnetic islands. Charged particles trapped in merging magnetic islands can be accelerated by the electric field generated by magnetic island merging and the contraction of magnetic islands. We derive a gyrophase-averaged transport equation for particles experiencing pitch-angle scattering and energization in a super-Alfvenic flowing plasma experiencing multiple small-scale reconnection events. A simpler advection-diffusion transport equation for a nearly isotropic particle distribution is derived. The dominant charged particle energization processes are (1) the electric field induced by quasi-2D magnetic island merging and (2) magnetic island contraction. The magnetic island topology ensures that charged particles are trapped in regions where they experience repeated interactions with the induced electric field or contracting magnetic islands. Steady-state solutions of the isotropic transport equation with only the induced electric field and a fixed source yield a power-law spectrum for the accelerated particles with index α = –(3 + M{sub A} )/2, where M{sub A} is the Alfven Mach number. Considering only magnetic island contraction yields power-law-like solutions with index –3(1 + τ {sub c}/(8τ{sub diff})), where τ {sub c}/τ{sub diff} is themore » ratio of timescales between magnetic island contraction and charged particle diffusion. The general solution is a power-law-like solution with an index that depends on the Alfven Mach number and the timescale ratio τ{sub diff}/τ {sub c}. Observed power-law distributions of energetic particles observed in the quiet supersonic solar wind at 1 AU may be a consequence of particle acceleration associated with dissipative small-scale reconnection processes in a turbulent plasma, including the widely reported c {sup –5} (c particle speed) spectra observed by Fisk and Gloeckler and Mewaldt et al.« less