scispace - formally typeset
Search or ask a question

Showing papers on "Electric field published in 2015"


Journal ArticleDOI
TL;DR: In this paper, the rate-dependent hysteresis seen in current-voltage scans of CH3NH3PbI3 perovskite solar cells is related to a slow field-induced process that tends to cancel the electric field in the device at each applied bias voltage.
Abstract: In this work we show that the rate-dependent hysteresis seen in current–voltage scans of CH3NH3PbI3 perovskite solar cells is related to a slow field-induced process that tends to cancel the electric field in the device at each applied bias voltage. It is attributed to the build-up of space charge close to the contacts, independent of illumination and most likely due to ionic displacement, which is enhanced when the device undergoes aging. This process can also lead to a reduction of the open-circuit voltage or the steady-state photocurrent and does not directly correlate with the development of the hysteresis if it is measured at a fixed voltage sweep rate.

1,150 citations


Journal ArticleDOI
TL;DR: It is demonstrated that a photodetector based on the graphene/MoS2 heterostructure is able to provide a high photogain greater than 108 and graphene is transferable onto MoS2.
Abstract: Due to its high carrier mobility, broadband absorption, and fast response time, the semi-metallic graphene is attractive for optoelectronics. Another two-dimensional semiconducting material molybdenum disulfide (MoS2) is also known as light- sensitive. Here we show that a large-area and continuous MoS2 monolayer is achievable using a CVD method and graphene is transferable onto MoS2. We demonstrate that a photodetector based on the graphene/MoS2 heterostructure is able to provide a high photogain greater than 10(8). Our experiments show that the electron-hole pairs are produced in the MoS2 layer after light absorption and subsequently separated across the layers. Contradictory to the expectation based on the conventional built-in electric field model for metal-semiconductor contacts, photoelectrons are injected into the graphene layer rather than trapped in MoS2 due to the presence of a perpendicular effective electric field caused by the combination of the built-in electric field, the applied electrostatic field, and charged impurities or adsorbates, resulting in a tuneable photoresponsivity.

831 citations


Journal ArticleDOI
TL;DR: This Review summarizes the experimental progress made in the electrical manipulation of magnetization in such materials, discusses the current understanding of the mechanisms, and finally presents the future prospects of the field.
Abstract: This Review discusses recent advances towards electric-field control of magnetism in ferromagnetic semiconductors and metals, and in multiferroics. The electrical manipulation of magnetism and magnetic properties has been achieved across a number of different material systems. For example, applying an electric field to a ferromagnetic material through an insulator alters its charge-carrier population. In the case of thin films of ferromagnetic semiconductors, this change in carrier density in turn affects the magnetic exchange interaction and magnetic anisotropy; in ferromagnetic metals, it instead changes the Fermi level position at the interface that governs the magnetic anisotropy of the metal. In multiferroics, an applied electric field couples with the magnetization through electrical polarization. This Review summarizes the experimental progress made in the electrical manipulation of magnetization in such materials, discusses our current understanding of the mechanisms, and finally presents the future prospects of the field.

777 citations


Journal ArticleDOI
TL;DR: In this paper, the authors show that electrical switching of the interfacial oxidation state allows for voltage control of magnetic properties to an extent never before achieved through conventional magneto-electric coupling mechanisms.
Abstract: In metal/oxide heterostructures, rich chemical, electronic, magnetic and mechanical properties can emerge from interfacial chemistry and structure. The possibility to dynamically control interface characteristics with an electric field paves the way towards voltage control of these properties in solid-state devices. Here, we show that electrical switching of the interfacial oxidation state allows for voltage control of magnetic properties to an extent never before achieved through conventional magneto-electric coupling mechanisms. We directly observe in situ voltage-driven O(2-) migration in a Co/metal-oxide bilayer, which we use to toggle the interfacial magnetic anisotropy energy by >0.75 erg cm(-2) at just 2 V. We exploit the thermally activated nature of ion migration to markedly increase the switching efficiency and to demonstrate reversible patterning of magnetic properties through local activation of ionic migration. These results suggest a path towards voltage-programmable materials based on solid-state switching of interface oxygen chemistry.

467 citations


Journal ArticleDOI
TL;DR: The expected accuracy of ne and issues in the interpretation of the electrostatic wave spectrum are described and described.
Abstract: The twin Van Allen Probe spacecraft, launched in August 2012, carry identical scientific payloads. The Electric and Magnetic Field Instrument Suite and Integrated Science suite includes a plasma wave instrument (Waves) that measures three magnetic and three electric components of plasma waves in the frequency range of 10 Hz to 12 kHz using triaxial search coils and the Electric Fields and Waves triaxial electric field sensors. The Waves instrument also measures a single electric field component of waves in the frequency range of 10 to 500 kHz. A primary objective of the higher-frequency measurements is the determination of the electron density ne at the spacecraft, primarily inferred from the upper hybrid resonance frequency fuh. Considerable work has gone into developing a process and tools for identifying and digitizing the upper hybrid resonance frequency in order to infer the electron density as an essential parameter for interpreting not only the plasma wave data from the mission but also as input to various magnetospheric models. Good progress has been made in developing algorithms to identify fuh and create a data set of electron densities. However, it is often difficult to interpret the plasma wave spectra during active times to identify fuh and accurately determine ne. In some cases, there is no clear signature of the upper hybrid band, and the low-frequency cutoff of the continuum radiation is used. We describe the expected accuracy of ne and issues in the interpretation of the electrostatic wave spectrum.

428 citations


Journal ArticleDOI
TL;DR: The MAVEN magnetic field experiment as mentioned in this paper is part of a comprehensive particle and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind.
Abstract: The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a quantization uncertainty of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05%. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers - multiple rotations about the spacecraft x and z axes - to characterize spacecraft fields and/or instrument offsets in flight.

407 citations


Journal ArticleDOI
TL;DR: The piezoelectric effect combined with photoelectric conversion realizes an ultrasonic-wave-driven piezophotototronic process in the hybrid photocatalyst, which is the fundamental of sonophotocatalysis.
Abstract: An electric field built inside a crystal was proposed to enhance photoinduced carrier separation for improving photocatalytic property of semiconductor photocatalysts. However, a static built-in electric field can easily be saturated by the free carriers due to electrostatic screening, and the enhancement of photocatalysis, thus, is halted. To overcome this problem, here, we propose sonophotocatalysis based on a new hybrid photocatalyst, which combines ferroelectric nanocrystals (BaTiO3) and semiconductor nanoparticles (Ag2O) to form an Ag2O–BaTiO3 hybrid photocatalyst. Under periodic ultrasonic excitation, a spontaneous polarization potential of BaTiO3 nanocrystals in responding to ultrasonic wave can act as alternating built-in electric field to separate photoinduced carriers incessantly, which can significantly enhance the photocatalytic activity and cyclic performance of the Ag2O–BaTiO3 hybrid structure. The piezoelectric effect combined with photoelectric conversion realizes an ultrasonic-wave-driven...

383 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present various models for the origin of the electric noise, provide a critical review of the experimental findings, and summarizes the important questions that are still open in this active research area.
Abstract: How can the electric noise in the vicinity of a metallic body be measured and understood? Trapped ions, known as unique tools for metrology and quantum information processing, also constitute very sensitive probes of this electric noise for distances from micrometers to millimeters. This paper presents various models for the origin of the electric noise, provides a critical review of the experimental findings, and summarizes the important questions that are still open in this active research area.

349 citations


Journal ArticleDOI
TL;DR: The variability in the electric fields is related to each individual's anatomical features and can only be controlled using detailed image processing, and age was found to have a slight negative effect on the electric field, which might have implications on tDCS studies on aging brains.

271 citations


Journal ArticleDOI
TL;DR: The proposed phase-change metamaterial provides a simple way to realize a broadband perfect absorber in the visible and near-infrared (NIR) regions and is important for a number of applications including thermally controlled photonic devices, solar energy conversion and optical data storage.
Abstract: We report a broadband polarization-independent perfect absorber with wide-angle near unity absorbance in the visible regime. Our structure is composed of an array of thin Au squares separated from a continuous Au film by a phase change material (Ge2Sb2Te5) layer. It shows that the near perfect absorbance is flat and broad over a wide-angle incidence up to 80° for either transverse electric or magnetic polarization due to a high imaginary part of the dielectric permittivity of Ge2Sb2Te5. The electric field, magnetic field and current distributions in the absorber are investigated to explain the physical origin of the absorbance. Moreover, we carried out numerical simulations to investigate the temporal variation of temperature in the Ge2Sb2Te5 layer and to show that the temperature of amorphous Ge2Sb2Te5 can be raised from room temperature to > 433 K (amorphous-to-crystalline phase transition temperature) in just 0.37 ns with a low light intensity of 95 nW/μm2, owing to the enhanced broadband light absorbance through strong plasmonic resonances in the absorber. The proposed phase-change metamaterial provides a simple way to realize a broadband perfect absorber in the visible and near-infrared (NIR) regions and is important for a number of applications including thermally controlled photonic devices, solar energy conversion and optical data storage.

264 citations


Journal ArticleDOI
TL;DR: In this paper, a new method for measuring radio frequency (RF) electric fields based on quantum interference using either Cs or Rb atoms contained in a dielectric vapor cell is described.
Abstract: Atom-based measurements of length, time, gravity, inertial forces and electromagnetic fields are receiving increasing attention. Atoms possess properties that suggest clear advantages as self calibrating platforms for measurements of these quantities. In this review, we describe work on a new method for measuring radio frequency (RF) electric fields based on quantum interference using either Cs or Rb atoms contained in a dielectric vapor cell. Using a bright resonance prepared within an electromagnetically induced transparency window it is possible to achieve high sensitivities, <1 μV cm−1 Hz−1/2, and detect small RF electric fields μV cm−1 with a modest setup. Some of the limitations of the sensitivity are addressed in the review. The method can be used to image RF electric fields and can be adapted to measure the vector electric field amplitude. Extensions of Rydberg atom-based electrometry for frequencies up to the terahertz regime are described.

Journal ArticleDOI
TL;DR: The longitudinal electric component of Belinfante's elusive spin momentum density is determined, a solenoidal field quantity often referred to as "virtual" in this work.
Abstract: We generate tightly focused optical vector beams whose electric fields spin around an axis transverse to the beams' propagation direction. We experimentally investigate these fields by exploiting the directional near-field interference of a dipolelike plasmonic field probe placed adjacent to a dielectric interface. This directionality depends on the transverse electric spin density of the excitation field. Near- to far-field conversion mediated by the dielectric interface enables us to detect the directionality of the emitted light in the far field and, therefore, to measure the transverse electric spin density with nanoscopic resolution. Finally, we determine the longitudinal electric component of Belinfante's elusive spin momentum density, a solenoidal field quantity often referred to as "virtual."

Journal ArticleDOI
TL;DR: In this paper, the effects of applying an electric field on lead halide perovskite solar cells under different environmental conditions are identified, such as exposure to light, heat, ambient environment, and electrical bias.
Abstract: For lead halide perovskite solar cells to be considered for large-scale commercial applications, the active material must be proven to be fundamentally stable under relevant operating conditions, such as exposure to light, heat, ambient environment, and electrical bias. Reversible and irreversible effects upon applying an electric field under different environmental conditions are identified. The application of an electric field in inert conditions leads only to a reversible poling on a time scale of minutes, whose distribution is mapped throughout the semiconductor film. It is also found that the presence of moisture, and in general of small polar and hydrogen-bonding molecules, results in an irreversible degradation in the presence of the electric field, which happens in a time scale of hours under conditions relevant for photovoltaic operation. The measurements here suggest that the irreversible field-induced degradation in air occurs via a hydrated phase, in which the organic cation is loosely bound and can drift in response to an electric field, finally degrading the material to PbI2. This has direct relevance to perovskite solar cells; hysteretic behavior in current–voltage curves is aggravated by the presence of moisture while devices aged under load accelerates degradation.

Journal ArticleDOI
TL;DR: A high-temperature ferroelectric material is presented that is based on a chiral Zn(2+) /Dy( 3+) complex exhibiting Dy(3+) luminescence, optical activity, and magnetism.
Abstract: Multifunctional molecular ferroelectrics are exciting materials synthesized using molecular chemistry concepts, which may combine a spontaneous electrical polarization, switched upon applying an electric field, with another physical property. A high-temperature ferroelectric material is presented that is based on a chiral Zn2+/Dy3+ complex exhibiting Dy3+ luminescence, optical activity, and magnetism. We investigate the correlations between the electric polarization and the crystal structure as well as between the low-temperature magnetic slow relaxation and the optical properties.

Journal ArticleDOI
TL;DR: The quantification of the coexistence of strain and surface charge mediated magnetoelectric coupling on ultra-thin Ni0.79Fe0.21/Cu/PMN-PT heterostructure is demonstrated and a pure surface charge modification of magnetism shows a strong correlation to polarization of PMN- PT.
Abstract: Strain and charge co-mediated magnetoelectric coupling are expected in ultra-thin ferromagnetic/ferroelectric multiferroic heterostructures, which could lead to significantly enhanced magnetoelectric coupling. It is however challenging to observe the combined strain charge mediated magnetoelectric coupling, and difficult in quantitatively distinguish these two magnetoelectric coupling mechanisms. We demonstrated in this work, the quantification of the coexistence of strain and surface charge mediated magnetoelectric coupling on ultra-thin Ni0.79Fe0.21/PMN-PT interface by using a Ni0.79Fe0.21/Cu/PMN-PT heterostructure with only strain-mediated magnetoelectric coupling as a control. The NiFe/PMN-PT heterostructure exhibited a high voltage induced effective magnetic field change of 375 Oe enhanced by the surface charge at the PMN-PT interface. Without the enhancement of the charge-mediated magnetoelectric effect by inserting a Cu layer at the PMN-PT interface, the electric field modification of effective magnetic field was 202 Oe. By distinguishing the magnetoelectric coupling mechanisms, a pure surface charge modification of magnetism shows a strong correlation to polarization of PMN-PT. A non-volatile effective magnetic field change of 104 Oe was observed at zero electric field originates from the different remnant polarization state of PMN-PT. The strain and charge co-mediated magnetoelectric coupling in ultra-thin magnetic/ferroelectric heterostructures could lead to power efficient and non-volatile magnetoelectric devices with enhanced magnetoelectric coupling.

Journal ArticleDOI
TL;DR: This work has demonstrated the feasibility of reversible and deterministic magnetization reversal controlled by pulsed electric fields with the assistance of a weak magnetic field, which is important for realizing strain-mediated magnetoelectric random access memories.
Abstract: We report a giant electric-field control of magnetization (M) as well as magnetic anisotropy in a Co40Fe40B20(CoFeB)/Pb(Mg1/3Nb2/3)0.7Ti0.3O3(PMN-PT) structure at room temperature, in which a maximum relative magnetization change (ΔM/M) up to 83% with a 90° rotation of the easy axis under electric fields were observed by different magnetic measurement systems with in-situ electric fields. The mechanism for this giant magnetoelectric (ME) coupling can be understood as the combination of the ultra-high value of anisotropic in-plane piezoelectric coefficients of (011)-cut PMN-PT due to ferroelectric polarization reorientation and the perfect soft ferromagnetism without magnetocrystalline anisotropy of CoFeB film. Besides the giant electric-field control of magnetization and magnetic anisotropy, this work has also demonstrated the feasibility of reversible and deterministic magnetization reversal controlled by pulsed electric fields with the assistance of a weak magnetic field, which is important for realizing strain-mediated magnetoelectric random access memories.

Journal ArticleDOI
TL;DR: How valleytronics is possible in these materials by selective interaction of electrons in the different valleys using polarized light is discussed, and for some structures semiconductor-metal transitions could be possible.
Abstract: Transition-metal dichalcogenides TX2 (T = W, Mo; X = S, Se, Te) are layered materials that are available in ultrathin forms such as mono-, bi- and multilayers, which are commonly known as two-dimensional materials. They have an intrinsic band gap in the range of some 500 meV to 2 eV, depending on the composition and number of layers, and giant intrinsic spin–orbit splittings for odd layer numbers, and, in conjunction with their high chemical and mechanical stability, they qualify as candidate materials for two-dimensional flexible electronics and spintronics. The electronic structure of each TX2 material is very sensitive to external factors, in particular towards electric and magnetic fields. A perpendicular electric field reduces the band gap, and for some structures semiconductor–metal transitions could be possible. Moreover, the electric field triggers the spin–orbit splitting for bilayers. A magnetic field applied normal to the layers causes the Hall effect, which in some cases may result in a quantum (spin) Hall effect and thus in magnetic switches. Finally, we discuss how valleytronics is possible in these materials by selective interaction of electrons in the different valleys using polarized light.

Journal ArticleDOI
TL;DR: New insights on the origin of ferroelectricity in MOFs are opened up and their promise as magnetoelectric multiferroics is highlighted.
Abstract: The coexistence of both electric and magnetic orders in some metal-organic frameworks (MOFs) has yielded a new class of multiferroics beyond inorganic materials. However, the coupling between two orders in multiferroic MOFs has not been convincingly verified yet. Here we present clear experimental evidences of cross coupling between electric and magnetic orders in a multiferroic MOF [(CH3)2NH2]Fe(HCOO)3 with a perovskite structure. The dielelectric constant exhibit a hump just at the magnetic ordering temperature TN. Moreover, both the direct (magnetic field control of dielectric properties) and converse (electric field control of magnetization) magnetoelectric effects have been observed in the multiferroic state. This work opens up new insights on the origin of ferroelectricity in MOFs and highlights their promise as magnetoelectric multiferroics.

Journal ArticleDOI
TL;DR: PFM results confirmed the formation of spontaneous polarization in CH3NH3PbI3 in the absence of electric field, and suggest the effect of perovskite crystal size on charge collection at the interface of the ferroelectric material even though insignificant size dependency in electric polarization was observed.
Abstract: We report on ferroelectric polarization behavior in CH3NH3PbI3 perovskite in the dark and under illumination. Perovskite crystals with three different sizes of 700, 400, and 100 nm were prepared for piezoresponse force microscopy (PFM) measurements. PFM results confirmed the formation of spontaneous polarization in CH3NH3PbI3 in the absence of electric field, where the size dependency to polarization was not significant. Whereas the photoinduced stimulation was not significant without an external electric field, the stimulated polarization by poling was further enhanced under illumination. The retention of ferroelectric polarization was also observed after removal of the electric field, in which larger crystals showed longer retention behavior compared to the smaller sized one. Additionally, we suggest the effect of perovskite crystal size (morphology) on charge collection at the interface of the ferroelectric material even though insignificant size dependency in electric polarization was observed.

Journal ArticleDOI
TL;DR: A first-principles study of the electronic properties of few-layer C2N-h2D with different stacking orders and layer numbers, which will have tremendous opportunities to be applied in nanoscale electronic and optoelectronic devices.
Abstract: Recently, a new type of two-dimensional layered material, i.e. a nitrogenated holey two-dimensional structure C2N-h2D, has been synthesized using a simple wet-chemical reaction and used to fabricate a field-effect transistor device (Nat. Commun., 2015, 6, 6486). Here we have performed a first-principles study of the electronic properties of few-layer C2N-h2D with different stacking orders and layer numbers. Because of the interlayer coupling mainly in terms of the orbital interaction, band structure of this system, especially splitting of the bands and band gap, depends on its stacking order between the layers, and the band gap exhibits monotonically decreasing behavior as the layer number increases. All the few-layer C2N-h2D materials have characteristics of direct band gap, irrespective of the stacking order and layer number examined in our calculations. And bulk C2N-h2D has an indirect or direct band gap, depending on the stacking order. Besides, when we apply an out-of-plane electric field on few-layer C2N-h2D, its band gap will decrease as the electric field increases due to a giant Stark effect except for the monolayer case, and even a semiconductor-to-metal transition may occur for few-layer C2N-h2D with more layers under an appropriate electric field. Owing to their tunable band gaps in a wide range, the layered C2N-h2D materials will have tremendous opportunities to be applied in nanoscale electronic and optoelectronic devices.

Journal ArticleDOI
TL;DR: The observed behaviour of the FeRh films is reminiscent of colossal magnetoresistance in perovskite manganites and illustrates the role of mixed-phase coexistence in achieving large changes in physical properties with low-energy external perturbation.
Abstract: The control of magnetization by an electric field can offer new magnetic data devices. Here, controlling magnetic phases in FeRh, the authors achieve a large electroresistance response in FeRh/PMN-PT heterostructures by applying an electric field, which could be used for non-volatile memory applications.

Journal ArticleDOI
TL;DR: In this article, the authors showed that hexagonal boron nitride sheet (h-BN), when under an external electric field, can become an effective sorbent for CO2 capture, indicating that the capture of CO2 on h-BN sheet under the electric field is highly preferred over other gas molecules.
Abstract: Developing highly efficient sorbent materials for CO2 separation and capture from gas mixture is most important for reducing impact of CO2 on the environment. On the basis of density functional theory calculations with dispersion correction, we show that hexagonal boron nitride sheet (h-BN), when under an external electric field, can become an effective sorbent for CO2 capture. In the absent of the electric field, CO2 molecules are physisorbed on the h-BN sheet. Under the external electric field, the adsorption of CO2 molecules on h-BN monolayer can be strongly strengthened. Compared to CO2, the adsorption of H2, N2, CH4, CO, or H2O on h-BN sheet is notably weaker, indicating that the capture of CO2 on h-BN sheet under the electric field is highly preferred over other gas molecules. The calculated ratio of adsorption rate constant of CO2 to other gas molecule can be as high as 105. Moreover, the capture of CO2 molecule on h-BN sheet is reversible; that is, the adsorbed CO2 can be released by shutting down...

Journal ArticleDOI
TL;DR: This work proposes a scenario for coupling between the electric field of light and spins via optical modification of the exchange interaction and demonstrates that this isotropic opto-magnetic effect, which can be called inverse magneto-refraction, is allowed in a material of any symmetry.
Abstract: Ultrafast non-thermal manipulation of magnetization by light relies on either indirect coupling of the electric field component of the light with spins via spin-orbit interaction or direct coupling between the magnetic field component and spins. Here we propose a scenario for coupling between the electric field of light and spins via optical modification of the exchange interaction, one of the strongest quantum effects with strength of 10(3) Tesla. We demonstrate that this isotropic opto-magnetic effect, which can be called inverse magneto-refraction, is allowed in a material of any symmetry. Its existence is corroborated by the experimental observation of terahertz emission by spin resonances optically excited in a broad class of iron oxides with a canted spin configuration. From its strength we estimate that a sub-picosecond modification of the exchange interaction by laser pulses with fluence of about 1 mJ cm(-2) acts as a pulsed effective magnetic field of 0.01 Tesla.

Journal ArticleDOI
TL;DR: In this article, a model based on isothermal surface potential decay (ISPD) is proposed to study the distribution of trapped charges by considering the physical mechanism of the detrapping process.
Abstract: Space charge formation in polymeric materials can cause some serious concern in real operation, because it has significant influence on the performance of polymers. For example, space charge in some insulating materials can severely distort the electric field, even lead to materials degradation. On the contrary, in the case of its applications, space charge stored in electrets can greatly improve their properties. It is therefore important to understand trapped charge distribution in materials as it is considered to be a novel indicator for effective evaluation of aging status and electric withstanding strength of insulating materials. In this paper, a model based on isothermal surface potential decay (ISPD) is proposed to study the distribution of trapped charges by considering the physical mechanism of the detrapping process. By measuring the ISPD characteristics of polymeric materials and fitting the data according to the assumption of shallow and deep traps, the distribution of trapped charges is obtained, which may be related to the change of aggregation structure of polymers. In order to verify the model, it is used to analyze different ISPD decay curves of polypropylene (PP) and low density polyethylene (LDPE), as well as the ISPD data of PP electrets with/without pressure expanding treatment. The results show that the proposed ISPD model is effective and convenient. Two peaks are observed on the curve of the trapped charge density versus the trap level. The obtained distribution of the trapped charges in polymers can reveal the different nature of electron/hole traps and the different transportation behavior of hole/electron carriers, i.e., the electron-type traps show an inter-chain character while the character of hole-type traps is intra-chain. In addition, the distribution of trapped charge is further related to aggregation structure of PP and LDPE, as well as PP electrets with/without pressure expanding treatment.

Journal ArticleDOI
TL;DR: This work has shown that the spin-splitting of the conduction electrons of non-magnetic metals or semi-conductors due to the Rashba spin-orbit coupling is modified by the exchange field resulting in a large magnetic anisotropy energy via the Dzyaloshinskii-Moriya mechanism.
Abstract: The control of the magnetism of ultra-thin ferromagnetic layers using an electric field, rather than a current, has many potential technologically important applications. It is usually insisted that such control occurs via an electric field induced surface charge doping that modifies the magnetic anisotropy. However, it remains the case that a number of key experiments cannot be understood within such a scenario. Much studied is the spin-splitting of the conduction electrons of non-magnetic metals or semi-conductors due to the Rashba spin-orbit coupling. This reflects a large surface electric field. For a magnet, this same splitting is modified by the exchange field resulting in a large magnetic anisotropy energy via the Dzyaloshinskii-Moriya mechanism. This different, yet traditional, path to an electrically induced anisotropy energy can explain the electric field, thickness, and material dependence reported in many experiments.

Journal ArticleDOI
TL;DR: G graphene is shown to have a simple thermodynamic balance maintained within the graphene electronic system acting as a thermalized electron gas, which defines the ultrafast conductivity of graphene, which in a highly nonlinear manner depends on the dynamics and the strength of the applied electric fields.
Abstract: The outstanding charge transport properties of graphene enable numerous electronic applications of this remarkable material, many of which are expected to operate at ultrahigh speeds. In the regime of ultrafast, sub-picosecond electric fields, however, the very high conduction properties of graphene are not necessarily preserved, with the physical picture explaining this behaviour remaining unclear. Here we show that in graphene, the charge transport on an ultrafast timescale is determined by a simple thermodynamic balance maintained within the graphene electronic system acting as a thermalized electron gas. The energy of ultrafast electric fields applied to graphene is converted into the thermal energy of its entire charge carrier population, near-instantaneously raising the electronic temperature. The dynamic interplay between heating and cooling of the electron gas ultimately defines the ultrafast conductivity of graphene, which in a highly nonlinear manner depends on the dynamics and the strength of the applied electric fields.

Journal ArticleDOI
TL;DR: This study studies the interplay between magnetism and electric polarization in the lacunar spinel GaV4S8, which undergoes a structural transition associated with orbital ordering at 44 K and reveals a complex magnetic phase diagram below 13 K, including ferromagnetic, cycloidal, and Néel-type skyrmion lattice (SkL) phases.
Abstract: Skyrmions are whirl-like topological spin objects with high potential for future magnetic data storage. A fundamental question that is relevant to both basic research and application is whether ferroelectric (FE) polarization can be associated with skyrmions' magnetic texture and whether these objects can be manipulated by electric fields. We study the interplay between magnetism and electric polarization in the lacunar spinel GaV4S8, which undergoes a structural transition associated with orbital ordering at 44 K and reveals a complex magnetic phase diagram below 13 K, including ferromagnetic, cycloidal, and Neel-type skyrmion lattice (SkL) phases. We found that the orbitally ordered phase of GaV4S8 is FE with a sizable polarization of ~1 μC/cm(2). Moreover, we observed spin-driven excess polarizations in all magnetic phases; hence, GaV4S8 hosts three different multiferroic phases with coexisting polar and magnetic order. These include the SkL phase, where we predict a strong spatial modulation of FE polarization close to the skyrmion cores. By taking into account the crystal symmetry and spin patterns of the magnetically ordered phases, we identify exchange striction as the main microscopic mechanism behind the spin-driven FE polarization in each multiferroic phase. Because GaV4S8 is unique among known SkL host materials owing to its polar crystal structure and the observed strong magnetoelectric effect, this study is an important step toward the nondissipative electric field control of skyrmions.

Journal ArticleDOI
TL;DR: In this article, a focused transport equation is derived that includes new Fokker-Planck terms for particle scattering and stochastic acceleration due to the variance in multiple flux-rope magnetic fields, plasma flows and reconnection electric fields.
Abstract: Simulations of particle acceleration in turbulent plasma regions with multiple contracting and merging (reconnecting) magnetic islands emphasize the key role of temporary particle trapping in island structures for the efficient acceleration of particles to form hard power-law spectra Statistical kinetic transport theories have been developed that capture the essential physics of particle acceleration in multi-island regions The transport theory of Zank et al is further developed by considering the acceleration effects of both the mean and the variance of the electric fields induced by the dynamics of multiple inertial-scale flux ropes A focused transport equation is derived that includes new Fokker-Planck terms for particle scattering and stochastic acceleration due to the variance in multiple flux-rope magnetic fields, plasma flows, and reconnection electric fields A Parker transport equation is also derived in which a new expression for momentum diffusion appears, combining stochastic acceleration by particle scattering in the mean multi-flux-rope electric fields with acceleration by the variance in these electric fields Test particle acceleration is modeled analytically considering drift acceleration by the variance in the induced electric fields of flux ropes in the slow supersonic, radially expanding solar wind Hard power-law spectra occur for sufficiently strong inertial-scale flux ropes with an index modified by adiabatic cooling, solar wind advection, and diffusive escape from flux ropes Flux ropes might be sufficiently strong behind interplanetary shocks where the index of suprathermal ion power-law spectra observed in the supersonic solar wind can be reproduced

Journal ArticleDOI
TL;DR: In this paper, a one-step process for the synthesis of elastomers with high permittivity, excellent mechanical properties and increased electromechanical sensitivity is presented, which starts from a high molecular weight polymethylvinylsiloxane, P1, whose vinyl groups serve two functions: the introduction of polar nitrile moieties by reacting P1 with 3-mercaptopropionitrile (1) and the introducing of cross-links to fine tune mechanical properties by reactingP1 with 2,2'-(ethylene-dioxy) diethan
Abstract: A one-step process for the synthesis of elastomers with high permittivity, excellent mechanical properties and increased electromechanical sensitivity is presented. It starts from a high molecular weight polymethylvinylsiloxane, P1, whose vinyl groups serve two functions: the introduction of polar nitrile moieties by reacting P1 with 3-mercaptopropionitrile (1) and the introduction of cross-links to fine tune mechanical properties by reacting P1 with 2,2'-(ethylene-dioxy) diethanethiol (2). This twofold chemical modification furnished a material, C2, with a powerful combination of properties: permittivity of up to 10.1 at 10(4) Hz, elastic modulus Y-10% = 154 kPa, and strain at break of 260%. Actuators made of C2 show lateral actuation strains of 20.5% at an electric field as low as 10.8 mu m(-1). Additionally, such actuators can self-repair after a breakdown, which is essential for an improved device lifetime and an attractive reliability. The actuators can be operated repeatedly and reversibly at voltages below the first breakdown. Due to the low actuation voltage and the large actuation strain applications of this material in commercial products might become reality.

Journal ArticleDOI
TL;DR: By tuning the excitation wavelength, this work can selectively excite magnetic or electric dipole transitions through optical fields by exciting a magnetic dipole transition in Eu^{3+} ions embedded in a Y2O3 nanoparticle.
Abstract: We use the magnetic field distribution of an azimuthally polarized focused laser beam to excite a magnetic dipole transition in Eu^{3+} ions embedded in a Y2O3 nanoparticle. The absence of the electric field at the focus of an azimuthally polarized beam allows us to unambiguously demonstrate that the nanoparticle is excited by the magnetic dipole transition near 527.5 nm. When the laser wavelength is resonant with the magnetic dipole transition, the nanoparticle maps the local magnetic field distribution, whereas when the laser wavelength is resonant with an electric dipole transition, the nanoparticle is sensitive to the local electric field. Hence, by tuning the excitation wavelength, we can selectively excite magnetic or electric dipole transitions through optical fields.