scispace - formally typeset
Search or ask a question
Topic

Electric power

About: Electric power is a research topic. Over the lifetime, 73036 publications have been published within this topic receiving 636991 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the concept of a more electric aircraft (MEA) is described, which involves removing the need for on-engine hydraulic power generation and bleed air off-takes, and increasing use of power electronics in the starter/generation system of the main engine.
Abstract: The latest advances in electric and electronic aircraft technologies from the point of view of an "all-electric" aircraft are presented herein. Specifically, we describe the concept of a "more electric aircraft" (MEA), which involves removing the need for on-engine hydraulic power generation and bleed air off-takes, and the increasing use of power electronics in the starter/generation system of the main engine. Removal of the engine hydraulic pumps requires fully-operative electrical power actuators and mastery of the flight control architecture. The paper presents a general overview of the electrical power generation system and electric drives for the MEA, with special regard to the flight controls. Some discussion regarding the interconnection of nodes and safety of buses and protocols in distributed systems is also presented

781 citations

Journal ArticleDOI
TL;DR: In this paper, the authors derived the Baliga high-frequency figure of merit for power semiconductor devices operating in high frequency circuits and showed that significant performance improvement can be achieved by replacing silicon with gallium arsenide, silicon carbide, or semiconducting diamond.
Abstract: A figure of merit (the Baliga high-frequency figure of merit) is derived for power semiconductor devices operating in high-frequency circuits. Using this figure of merit, it is predicted that the power losses incurred in the power device will increase as the square root of the operating frequency and approximately in proportion to the output power. By relating the device power dissipation to the intrinsic material parameters, it is shown that the power loss can be reduced by using semiconductors with larger mobility and critical electric field for breakdown. Examination of data in the literature indicates that significant performance improvement can be achieved by replacing silicon with gallium arsenide, silicon carbide, or semiconducting diamond. >

776 citations

Journal ArticleDOI
21 Jul 2002
TL;DR: In this article, some of the technological issues related to meso and micro-scale combustion and the operation of thermochemical devices for power generation are discussed. But, considering that it is a new frontier of technological development, and that only a few projects have been funded, it can be said that significant progress has not been made to date.
Abstract: The push toward the miniaturization of electro-mechanical devices and the resulting need for micro-power generation (milli-watts to watts) with low-weight, long-life devices has led to the recent development of the field of micro-scale combustion. The concept behind this new field is that since batteries have low specific energy, and liquid hydrocarbon fuels have a very high specific energy, a miniaturized power generating device, even with a relatively inefficient conversion of hydrocarbon fuels to power would result in increased lifetime and/or reduced weight of an electronic or mechanical system that currently requires batteries for power. In addition to the interest in miniaturization, the field is also driven by the potential fabrication of the devices using Micro Electro Mechanical Systems (MEMS) or rapid prototyping techniques, with their favorable characteristics for mass production and low cost. The micro-power generation field is very young, and still is in most cases in the feasibility stage. However, considering that it is a new frontier of technological development, and that only a few projects have been funded, it can be said that significant progress has been made to date. Currently there is consensus, at least among those working in the field, that combustion in the micro-scale is possible with proper thermal and chemical management. Several meso-scale and micro-scale combustors have been developed that appear to operate with good combustion efficiency. Some of these combustors have been applied to energize thermoelectric systems to produce electrical power, although with low overall efficiency. Several turbines/engines have also been, or are being, developed, some of them currently producing positive power, also with low efficiency to date. Micro-rockets using solid or liquid fuels have been built and shown to produce thrust. Hydrogen-based micro size fuel cells have been successfully developed, and there is a need to develop reliable reformers (or direct-conversion fuel cells) for liquid hydrocarbons so that the fuel cells become competitive with batteries. In this work, some of the technological issues related to meso and micro-scale combustion and the operation of thermochemical devices for power generation will be discussed. Some of the systems currently being developed will be presented and described.

775 citations

Book
24 Jun 2009
TL;DR: In this article, the authors proposed a potential solution for sustainable, energy-efficient power supply to cater for increasing load growth, supplying power to remote areas, generation of clean power and reduction in emission of greenhouse gases & particulates as per Kyoto protocol.
Abstract: Microgrids and Active Distribution Networks offer a potential solution for sustainable, energy-efficient power supply to cater for increasing load growth, supplying power to remote areas, generation of clean power and reduction in emission of greenhouse gases & particulates as per Kyoto protocol.

754 citations

Book
11 Nov 1983

740 citations


Network Information
Related Topics (5)
Electric power system
133K papers, 1.7M citations
88% related
Renewable energy
87.6K papers, 1.6M citations
85% related
Voltage
296.3K papers, 1.7M citations
85% related
Control system
129K papers, 1.5M citations
83% related
Photovoltaic system
103.9K papers, 1.6M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023267
2022678
20211,512
20202,845
20193,476