scispace - formally typeset
Search or ask a question

Showing papers on "Electric power system published in 2014"


Journal ArticleDOI
TL;DR: In this paper, the authors present a comprehensive review and assessment of the latest research and advancement of electric vehicles (EVs) interaction with smart grid portraying the future electric power system model.
Abstract: This paper presents a comprehensive review and assessment of the latest research and advancement of electric vehicles (EVs) interaction with smart grid portraying the future electric power system model. The concept goal of the smart grid along with the future deployment of the EVs puts forward various challenges in terms of electric grid infrastructure, communication and control. Following an intensive review on advanced smart metering and communication infrastructures, the strategy for integrating the EVs into the electric grid is presented. Various EV smart charging technologies are also extensively examined with the perspective of their potential, impacts and limitations under the vehicle-to-grid (V2G) phenomenon. Moreover, the high penetration of renewable energy sources (wind and photovoltaic solar) is soaring up into the power system. However, their intermittent power output poses different challenges on the planning, operation and control of the power system networks. On the other hand, the deployment of EVs in the energy market can compensate for the fluctuations of the electric grid. In this context, a literature review on the integration of the renewable energy and the latest feasible solution using EVs with the insight of the promising research gap to be covered up are investigated. Furthermore, the feasibility of the smart V2G system is thoroughly discussed. In this paper, the EVs interactions with the smart grid as the future energy system model are extensively discussed and research gap is revealed for the possible solutions.

793 citations


Journal ArticleDOI
TL;DR: In this paper, a self-synchronized synchronverter is proposed to improve the performance of grid-connected inverters by removing the dedicated synchronization unit, which can automatically synchronize itself with the grid before connection and track the grid frequency after connection.
Abstract: A synchronverter is an inverter that mimics synchronous generators, which offers a mechanism for power systems to control grid-connected renewable energy and facilitates smart grid integration. Similar to other grid-connected inverters, it needs a dedicated synchronization unit, e.g., a phase-locked loop (PLL), to provide the phase, frequency, and amplitude of the grid voltage as references. In this paper, a radical step is taken to improve the synchronverter as a self-synchronized synchronverter by removing the dedicated synchronization unit. It can automatically synchronize itself with the grid before connection and track the grid frequency after connection. This considerably improves the performance, reduces the complexity, and computational burden of the controller. All the functions of the original synchronverter, such as frequency and voltage regulation, real power, and reactive power control, are maintained. Both simulation and experimental results are presented to validate the control strategy. Experimental results have shown that the proposed control strategy can improve the performance of frequency tracking by more than 65%, the performance of real power control by 83%, and the performance of reactive power control by about 70%.

793 citations


Journal ArticleDOI
TL;DR: Electrical and practical designs of the inverter, power lines, pickup, rectifier, and regulator as well as an optimized core structure design for a large air gap for electromotive force shielding for the electric vehicle are described.
Abstract: In this paper, the design and implementation of a wireless power transfer system for moving electric vehicles along with an example of an online electric vehicle system are presented. Electric vehicles are charged on roadway by wireless power transfer technology. Electrical and practical designs of the inverter, power lines, pickup, rectifier, and regulator as well as an optimized core structure design for a large air gap are described. Also, electromotive force shielding for the electric vehicle is suggested. The overall system was implemented and tested. The experimental results showed that 100-kW power with 80% power transfer efficiency under 26-cm air gap was acquired.

725 citations


Journal ArticleDOI
TL;DR: In this paper, a double-layer hierarchical control strategy was proposed to overcome the control challenge associated with coordination of multiple batteries within one stand-alone microgrid, where the unit-level primary control layer was established by an adaptive voltage-droop method aimed to regulate the common bus voltage and to sustain the states of charge (SOCs) of batteries close to each other during moderate replenishment.
Abstract: DC power systems are gaining an increasing interest in renewable energy applications because of the good matching with dc output type sources such as photovoltaic (PV) systems and secondary batteries. In this paper, several distributed generators (DGs) have been merged together with a pair of batteries and loads to form an autonomous dc microgrid (MG). To overcome the control challenge associated with coordination of multiple batteries within one stand-alone MG, a double-layer hierarchical control strategy was proposed. 1) The unit-level primary control layer was established by an adaptive voltage-droop method aimed to regulate the common bus voltage and to sustain the states of charge (SOCs) of batteries close to each other during moderate replenishment. The control of every unit was expanded with unit-specific algorithm, i.e., finish-of-charging for batteries and maximum power-point tracking (MPPT) for renewable energy sources, with which a smooth online overlap was designed and 2) the supervisory control layer was designed to use the low-bandwidth communication interface between the central controller and sources in order to collect data needed for adaptive calculation of virtual resistances (VRs) as well as transit criteria for changing unit-level operating modes. A small-signal stability for the whole range of VRs. The performance of developed control was assessed through experimental results.

631 citations


Journal ArticleDOI
TL;DR: In this article, an impedance-based analytical approach is employed and expanded to a meshed and balanced three-phase network which is dominated by multiple current and voltage-controlled inverters with LCL-and LC-filters.
Abstract: This paper addresses the harmonic stability caused by the interactions among the wideband control of power converters and passive components in an ac power-electronics-based power system. The impedance-based analytical approach is employed and expanded to a meshed and balanced three-phase network which is dominated by multiple current- and voltage-controlled inverters with LCL- and LC-filters. A method of deriving the impedance ratios for the different inverters is proposed by means of the nodal admittance matrix. Thus, the contribution of each inverter to the harmonic stability of the power system can be readily predicted through Nyquist diagrams. Time-domain simulations and experimental tests on a three-inverter-based power system are presented. The results validate the effectiveness of the theoretical approach.

616 citations


Journal ArticleDOI
TL;DR: The objective of this paper is to provide a review of distributed control and management strategies for the next generation power system in the context of microgrids and identifies challenges and opportunities ahead.
Abstract: The objective of this paper is to provide a review of distributed control and management strategies for the next generation power system in the context of microgrids. This paper also identifies future research directions. The next generation power system, also referred to as the smart grid, is distinct from the existing power system due to its extensive use of integrated communication, advanced components such as power electronics, sensing, and measurement, and advanced control technologies. At the same time, the need for increased number of small distributed and renewable energy resources can exceed the capabilities of an available computational resource. Therefore, the recent literature has seen a significant research effort on dividing the control task among different units, which gives rise to the development of several distributed techniques. This paper discusses features and characteristics of these techniques, and identifies challenges and opportunities ahead. The paper also discusses the relationship between distributed control and hierarchical control.

594 citations


Journal ArticleDOI
TL;DR: In this paper, an extreme learning machine (ELM)-based probabilistic forecasting method for wind power generation is proposed to account for the uncertainties in the forecasting results, several bootstrap methods have been compared for modeling the regression uncertainty, based on which the pairs bootstrap method is identified with the best performance.
Abstract: Accurate and reliable forecast of wind power is essential to power system operation and control. However, due to the nonstationarity of wind power series, traditional point forecasting can hardly be accurate, leading to increased uncertainties and risks for system operation. This paper proposes an extreme learning machine (ELM)-based probabilistic forecasting method for wind power generation. To account for the uncertainties in the forecasting results, several bootstrap methods have been compared for modeling the regression uncertainty, based on which the pairs bootstrap method is identified with the best performance. Consequently, a new method for prediction intervals formulation based on the ELM and the pairs bootstrap is developed. Wind power forecasting has been conducted in different seasons using the proposed approach with the historical wind power time series as the inputs alone. The results demonstrate that the proposed method is effective for probabilistic forecasting of wind power generation with a high potential for practical applications in power systems.

586 citations


Patent
15 Aug 2014
TL;DR: In this paper, a power system for powering a surgical instrument including an end effector and a motor configured to generate at least one motion to effectuate the end-effector, was presented.
Abstract: A power system, for powering a surgical instrument including an end effector and a motor configured to generate at least one motion to effectuate the end effector, includes a primary power source configured to supply a first power to operate the surgical instrument, wherein the primary power source is detachable from the surgical instrument, a secondary power source configured to supply a second power to operate the surgical instrument when the primary power source is detached from the surgical instrument, wherein the secondary power source is rechargeable, and wherein the primary power source is configured to charge the secondary power system, and a power management circuit configured to selectively transmit the first power from the primary power source and the secondary power from the secondary power source to operate the surgical instrument.

545 citations


Journal ArticleDOI
TL;DR: In this article, the impact of low rotational inertia on power system stability and operation is investigated, and new analysis insights and impact mitigation options are provided for power systems with high RES shares.

525 citations


Journal ArticleDOI
TL;DR: In this article, a comprehensive research about the combined models is called on for how these models are constructed and affect the forecasting performance, and an up-to-date annotated bibliography of the wind forecasting literature is presented.
Abstract: With the continuous increase of wind power penetration in power systems, the problems caused by the volatile nature of wind speed and its occurrence in the system operations such as scheduling and dispatching have drawn attention of system operators, utilities and researchers towards the state-of-the-art wind speed and power forecasting methods These methods have the required capability of reducing the influence of the intermittent wind power on system operations as well as of harvesting the wind energy effectively In this context, combining different methodologies in order to circumvent the challenging model selection and take advantage of the unique strength of plausible models have recently emerged as a promising research area Therefore, a comprehensive research about the combined models is called on for how these models are constructed and affect the forecasting performance Aiming to fill the mentioned research gap, this paper outlines the combined forecasting approaches and presents an up-to date annotated bibliography of the wind forecasting literature Furthermore, the paper also points out the possible further research directions of combined techniques so as to help the researchers in the field develop more effective wind speed and power forecasting methods

514 citations


Journal ArticleDOI
TL;DR: A decentralized power sharing method is proposed in order to eliminate the need for any communication between DGs or microgrids and the performance of the proposed power control strategy is validated for different operating conditions, using simulation studies in the PSCAD/EMTDC software environment.
Abstract: Hybrid AC/DC microgrids have been planned for the better interconnection of different distributed generation systems (DG) to the power grid, and exploiting the prominent features of both ac and dc microgrids. Connecting these microgrids requires an interlinking AC/DC converter (IC) with a proper power management and control strategy. During the islanding operation of the hybrid AC/DC microgrid, the IC is intended to take the role of supplier to one microgrid and at the same time acts as a load to the other microgrid and the power management system should be able to share the power demand between the existing AC and dc sources in both microgrids. This paper considers the power flow control and management issues amongst multiple sources dispersed throughout both ac and dc microgrids. The paper proposes a decentralized power sharing method in order to eliminate the need for any communication between DGs or microgrids. This hybrid microgrid architecture allows different ac or dc loads and sources to be flexibly located in order to decrease the required power conversions stages and hence the system cost and efficiency. The performance of the proposed power control strategy is validated for different operating conditions, using simulation studies in the PSCAD/EMTDC software environment.

Journal ArticleDOI
TL;DR: A neural network (NN)-based method for the construction of prediction intervals (PIs) and a new problem formulation is proposed, which translates the primary multiobjectives problem into a constrained single-objective problem.
Abstract: Electrical power systems are evolving from today's centralized bulk systems to more decentralized systems. Penetrations of renewable energies, such as wind and solar power, significantly increase the level of uncertainty in power systems. Accurate load forecasting becomes more complex, yet more important for management of power systems. Traditional methods for generating point forecasts of load demands cannot properly handle uncertainties in system operations. To quantify potential uncertainties associated with forecasts, this paper implements a neural network (NN)-based method for the construction of prediction intervals (PIs). A newly introduced method, called lower upper bound estimation (LUBE), is applied and extended to develop PIs using NN models. A new problem formulation is proposed, which translates the primary multiobjective problem into a constrained single-objective problem. Compared with the cost function, this new formulation is closer to the primary problem and has fewer parameters. Particle swarm optimization (PSO) integrated with the mutation operator is used to solve the problem. Electrical demands from Singapore and New South Wales (Australia), as well as wind power generation from Capital Wind Farm, are used to validate the PSO-based LUBE method. Comparative results show that the proposed method can construct higher quality PIs for load and wind power generation forecasts in a short time.

Journal ArticleDOI
TL;DR: It is proved that the swing dynamics and the branch power flows, coupled with frequency-based load control, serve as a distributed primal-dual algorithm to solve OLC and establish the global asymptotic stability of a multimachine network under such type of load-side primary frequency control.
Abstract: We present a systematic method to design ubiquitous continuous fast-acting distributed load control for primary frequency regulation in power networks, by formulating an optimal load control (OLC) problem where the objective is to minimize the aggregate cost of tracking an operating point subject to power balance over the network. We prove that the swing dynamics and the branch power flows, coupled with frequency-based load control, serve as a distributed primal-dual algorithm to solve OLC. We establish the global asymptotic stability of a multimachine network under such type of load-side primary frequency control. These results imply that the local frequency deviations on each bus convey exactly the right information about the global power imbalance for the loads to make individual decisions that turn out to be globally optimal. Simulations confirm that the proposed algorithm can rebalance power and resynchronize bus frequencies after a disturbance with significantly improved transient performance.

Journal ArticleDOI
TL;DR: A review of state-of-the-art methods and new developments in wind power probabilistic forecasting is presented in this paper, where three different representations of wind power uncertainty are briefly introduced.
Abstract: The randomness and intermittence of wind resources is the biggest challenge in the integration of wind power into the power system. Accurate forecasting of wind power generation is an efficient tool to deal with such problem. Conventional wind power forecasting produces a value, or the conditional expectation of wind power output at a time point in the future. However, any prediction involves inherent uncertainty. In recent years, several probabilistic forecasting approaches have been reported in wind power forecasting studies. Compared to currently wide-used point forecasts, probabilistic forecasts could provide additional quantitative information on the uncertainty associated with wind power generation. For decision-makings in the uncertainty environment, probabilistic forecasts are optimal inputs. A review of state-of-the-art methods and new developments in wind power probabilistic forecasting is presented in this paper. Firstly, three different representations of wind power uncertainty are briefly introduced. Then, different forecasting methods are discussed. These methods are classified into three categories in terms of uncertainty representation, i.e. probabilistic forecasts (parametric and non-parametric), risk index forecasts and space-time scenario forecasts. Finally, requirements and the overall framework of the uncertainty forecasting evaluation are summarized. In addition, this article also describes current challenges and future developments associated with wind power probabilistic prediction.

Journal ArticleDOI
TL;DR: In this paper, a comprehensive review of conventional fault-tolerant techniques regarding power electronic converters in case of power semiconductor device failures is presented, which can be classified into four categories based on the type of hardware redundancy unit: switch-level, leglevel, module-level and system-level.
Abstract: With wide-spread application of power electronic converters in high power systems, there has been a growing interest in system reliability analysis and fault-tolerant capabilities. This paper presents a comprehensive review of conventional fault-tolerant techniques regarding power electronic converters in case of power semiconductor device failures. These techniques can be classified into four categories based on the type of hardware redundancy unit: switch-level, leg-level, module-level, and system-level. Also, various fault-tolerant methods are assessed according to cost, complexity, performance, etc. The intent of this review is to provide a detailed picture regarding the current landscape of research in power electronic fault-handling mechanisms.

Journal ArticleDOI
01 May 2014-Energy
TL;DR: In this article, the authors quantify the flexibility requirements at the operational timescale of 1-12 hours and different spatial scales across Europe and find that the flexibility requirement of a geographically large, transnational power system is significantly lower than of smaller regional systems, especially at high wind penetration.

Journal ArticleDOI
Salvatore D'Arco1, Jon Are Suul1
TL;DR: These two approaches for adding virtual inertia to the power system through the control of power electronic converters are equivalent under certain conditions, as demonstrated in this letter.
Abstract: Over the last decade, frequency-droop-based control schemes have become the preferred solution in microgrids dominated by power electronic converters. More recently, the concept of virtual synchronous machines (VSMs) has emerged as an effective method for adding virtual inertia to the power system through the control of power electronic converters. These two approaches have been developed in two separate contexts, but present strong similarities. In fact, they are equivalent under certain conditions, as demonstrated in this letter. Analysis of this equivalence provides additional physics-based insight into the tuning and operation of both types of controllers.

Journal ArticleDOI
TL;DR: A novel false data detection mechanism is proposed based on the separation of nominal power grid states and anomalies, and two methods, the nuclear norm minimization and low rank matrix factorization, are presented to solve this problem.
Abstract: State estimation in electric power grid is vulnerable to false data injection attacks, and diagnosing such kind of malicious attacks has significant impacts on ensuring reliable operations for power systems. In this paper, the false data detection problem is viewed as a matrix separation problem. By noticing the intrinsic low dimensionality of temporal measurements of power grid states as well as the sparse nature of false data injection attacks, a novel false data detection mechanism is proposed based on the separation of nominal power grid states and anomalies. Two methods, the nuclear norm minimization and low rank matrix factorization, are presented to solve this problem. It is shown that proposed methods are able to identify proper power system operation states as well as detect the malicious attacks, even under the situation that collected measurement data is incomplete. Numerical simulation results both on the synthetic and real data validate the effectiveness of the proposed mechanism.

Journal ArticleDOI
TL;DR: In this article, an oscillation damping approach is developed for a distributed generator using the virtual synchronous generator (VSG), which can produce virtual inertia from energy storage during a short operation time.
Abstract: These days, distributed generators (DGs), such as photovoltaic, wind turbine, and gas cogeneration systems have attracted more attention than in the past. DGs are often connected to a grid by power inverters. The inverters used in DGs are generally controlled by a phase-locked loop (PLL) in order to be synchronized with the grid. In a stability point of view, the power system will be significantly affected if the capacity of inverter-based DGs becomes larger and larger. The concept of the virtual synchronous generator (VSG), which is used to control inverters to behave like a real synchronous generator, can be considered as a solution. The VSG can produce virtual inertia from energy storage during a short operation time, and the active power can be produced by a VSG similar to a synchronous generator. In this paper, an oscillation damping approach is developed for a DG using the VSG. The method is confirmed analytically, and verified through computer simulations. Finally, some laboratory experiments are conducted using 10-kW inverters and a transmission-line simulator.

Journal ArticleDOI
TL;DR: A distributed algorithm is presented to solve the economic power dispatch with transmission line losses and generator constraints based on two consensus algorithms running in parallel using a consensus strategy called consensus on the most up-to-date information.
Abstract: A distributed algorithm is presented to solve the economic power dispatch with transmission line losses and generator constraints. The proposed approach is based on two consensus algorithms running in parallel. The first algorithm is a first-order consensus protocol modified by a correction term which uses a local estimation of the system power mismatch to ensure the generation-demand equality. The second algorithm performs the estimation of the power mismatch in the system using a consensus strategy called consensus on the most up-to-date information. The proposed approach can handle networks of different size and topology using the information about the number of nodes which is also evaluated in a distributed fashion. Simulations performed on standard test cases demonstrate the effectiveness of the proposed approach for both small and large systems.

Journal ArticleDOI
TL;DR: In this paper, the authors introduced a probabilistic modeling approach for quantifying the hurricane resilience of contemporary electric power systems, which includes a hurricane hazard model, component fragility models, a power system performance model, and a system restoration model.

Journal ArticleDOI
TL;DR: It is found in numerical simulations of artificially generated power grids that tree-like connection schemes--so-called dead ends and dead trees--strongly diminish stability, which may indicate a topological design principle for future power grids: avoid dead ends.
Abstract: The cheapest and thus widespread way to add new generators to a high-voltage power grid is by a simple tree-like connection scheme. However, it is not entirely clear how such locally cost-minimizing connection schemes affect overall system performance, in particular the stability against blackouts. Here we investigate how local patterns in the network topology influence a power grid's ability to withstand blackout-prone large perturbations. Employing basin stability, a nonlinear concept, we find in numerical simulations of artificially generated power grids that tree-like connection schemes--so-called dead ends and dead trees--strongly diminish stability. A case study of the Northern European power system confirms this result and demonstrates that the inverse is also true: repairing dead ends by addition of a few transmission lines substantially enhances stability. This may indicate a topological design principle for future power grids: avoid dead ends.

Journal ArticleDOI
TL;DR: This work studies the problem of finding the optimal attack strategy--i.e., a data-injection attacking strategy that selects a set of meters to manipulate so as to cause the maximum damage and formalizes the problem and develops efficient algorithms to identify the optimal meter set.
Abstract: It is critical for a power system to estimate its operation state based on meter measurements in the field and the configuration of power grid networks. Recent studies show that the adversary can bypass the existing bad data detection schemes, posing dangerous threats to the operation of power grid systems. Nevertheless, two critical issues remain open: 1) how can an adversary choose the meters to compromise to cause the most significant deviation of the system state estimation, and 2) how can a system operator defend against such attacks? To address these issues, we first study the problem of finding the optimal attack strategy--i.e., a data-injection attacking strategy that selects a set of meters to manipulate so as to cause the maximum damage. We formalize the problem and develop efficient algorithms to identify the optimal meter set. We implement and test our attack strategy on various IEEE standard bus systems, and demonstrate its superiority over a baseline strategy of random selections. To defend against false data-injection attacks, we propose a protection-based defense and a detection-based defense, respectively. For the protection-based defense, we identify and protect critical sensors and make the system more resilient to attacks. For the detection-based defense, we develop the spatial-based and temporal-based detection schemes to accurately identify data-injection attacks.

Journal ArticleDOI
TL;DR: A resiliency-oriented microgrid optimal scheduling model is proposed that is economically optimal, guarantees robustness against prevailing operational uncertainties, and supports a quick islanding with minimum consumer inconvenience and load curtailment.
Abstract: One of complementary value propositions of microgrids is to improve power system resiliency via local supply of loads and curtailment reduction. This subject is investigated in this paper by proposing a resiliency-oriented microgrid optimal scheduling model. The proposed model aims at minimizing the microgrid load curtailment by efficiently scheduling available resources when supply of power from the main grid is interrupted for an extended period of time. The problem is decomposed to normal operation and resilient operation problems. The normal operation problem solution, i.e., unit commitment states, energy storage schedules, and adjustable loads schedules, is employed in the resilient operation problem to examine microgrid capability in supplying local loads during main grid supply interruption. The schedule is revised via resiliency cuts if a zero mismatch is not obtained. Prevailing operational uncertainties in load, non-dispatchable generation, and the main grid supply interruption time and duration are considered and captured using a robust optimization method. The final solution, which is obtained in an iterative manner, is economically optimal, guarantees robustness against prevailing operational uncertainties, and supports a quick islanding with minimum consumer inconvenience and load curtailment. Numerical simulations demonstrate the effectiveness of the proposed resiliency-oriented microgrid optimal scheduling model applied to a test microgrid.

Journal ArticleDOI
TL;DR: In this paper, an integrated distribution locational marginal pricing (DLMP) method designed to alleviate congestion induced by electric vehicle (EV) loads in future power systems is presented, which considers EV aggregators as price takers in local DSO market and demand price elasticity.
Abstract: This paper presents an integrated distribution locational marginal pricing (DLMP) method designed to alleviate congestion induced by electric vehicle (EV) loads in future power systems. In the proposed approach, the distribution system operator (DSO) determines distribution locational marginal prices (DLMPs) by solving the social welfare optimization of the electric distribution system which considers EV aggregators as price takers in the local DSO market and demand price elasticity. Nonlinear optimization has been used to solve the social welfare optimization problem in order to obtain the DLMPs. The efficacy of the proposed approach was demonstrated by using the bus 4 distribution system of the Roy Billinton Test System (RBTS) and Danish driving data. The case study results show that the integrated DLMP methodology can successfully alleviate the congestion caused by EV loads. It is also shown that the socially optimal charging schedule can be implemented through a decentralized mechanism where loads respond autonomously to the posted DLMPs by maximizing their individual net surplus.

Journal ArticleDOI
TL;DR: The importance of power electronics as an enabling technology for this step change in aircraft design is considered, and examples of typical system designs are discussed in this article, as well as the exciting future challenges for the aerospace industry.
Abstract: The More Electric Aircraft concept offers many potential benefits in the design and efficiency of future large, manned aircraft. In this article, typical ?aircraft electrical power systems and associated loads are described as well as the exciting future challenges for the aerospace industry. The importance of power electronics as an enabling technology for this step change in aircraft design is considered, and examples of typical system designs are discussed.

01 Jan 2014
TL;DR: The WIND Toolkit as mentioned in this paper provides a state-of-the-art national wind resource, power production and forecast dataset, as well as time synchronized with available load profiles.
Abstract: Regional wind integration studies require detailed wind power output data at many locations to perform simulations of how the power system will operate under high penetration scenarios. The wind datasets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as being time synchronized with available load profiles.As described in this presentation, the WIND Toolkit fulfills these requirements by providing a state-of-the-art national (US) wind resource, power production and forecast dataset.

Journal ArticleDOI
TL;DR: In this article, the authors presented controller parameters tuning of differential evolution (DE) algorithm and its application to Load Frequency Control (LFC) of a multi-source power system having different sources of power generation like thermal, hydro and gas power plants.

Journal ArticleDOI
TL;DR: In this paper, a virtual synchronous machine (VSM) is used to support dynamic frequency control in a diesel-hybrid autonomous power system, where self-tuning algorithms are used to continuously search for optimal parameters during the operation of the VSM in order to minimize the amplitude and rate of change of the frequency variations and the power flow through the ESS.
Abstract: This paper investigates the use of a virtual synchronous machine (VSM) to support dynamic frequency control in a diesel-hybrid autonomous power system. The proposed VSM entails controlling the grid-interface converter of an energy storage system (ESS) to emulate the inertial response and the damping power of a synchronous generator. In addition, self-tuning algorithms are used to continuously search for optimal parameters during the operation of the VSM in order to minimize the amplitude and rate of change of the frequency variations and the power flow through the ESS. The performances of the proposed self-tuning (ST)-VSM and the constant parameters (CP)-VSM were evaluated by comparing their inertial responses and their damping powers for different scenarios of load variations. For the simulated cases, the ST-VSM achieved a similar performance to that of the CP-VSM, while reducing the power flow through the ESS in up to 58%. Moreover, in all the simulated scenarios, the ST-VSM was found to be more efficient than the CP-VSM in attenuating frequency variations, i.e., it used less energy per Hertz reduced.

Journal ArticleDOI
TL;DR: In this article, a spatial-temporal model (STM) is developed to evaluate the impact of large scale deployment of plug-in electric vehicles (EVs) on urban distribution networks.