scispace - formally typeset
Topic

Electric power transmission

About: Electric power transmission is a(n) research topic. Over the lifetime, 29600 publication(s) have been published within this topic receiving 299896 citation(s). The topic is also known as: electricity transmission & electric transmission.

...read more

Papers
  More

Open accessBook
01 Jan 1984-
Abstract: Topics considered include characteristics of power generation units, transmission losses, generation with limited energy supply, control of generation, and power system security. This book is a graduate-level text in electric power engineering as regards to planning, operating, and controlling large scale power generation and transmission systems. Material used was generated in the post-1966 period. Many (if not most) of the chapter problems require a digital computer. A background in steady-state power circuit analysis is required.

...read more

Topics: Power transmission (64%), Electric power (63%), Distributed generation (63%) ...read more

6,152 Citations


Open accessBook
01 Jan 1994-
Abstract: 1 Basic Concepts 2 Transformers 3 The Synchronous Machine 4 Series Impedance of Transmission Lines 5 Capacitance of Transmission Lines 6 Current and Voltage Relations on a Transmission Line 7 The Admittance Model and Network Calculations 8 The Impedance Model and Network Calculations 9 Power Flow Solutions 10 Symmetrical Faults 11 Symmetrical Components and Sequence Networks 12 Unsymmetrical Faults 13 Economic Operation of Power Systems 14 Zbus Methods in Contingency Analysis 15 State Estimation of Power Systems 16 Power System Stability

...read more

Topics: Electric power transmission (63%), Zbus (62%), Symmetrical components (61%) ...read more

2,155 Citations


Open accessJournal ArticleDOI: 10.1103/PHYSREVE.69.025103
26 Feb 2004-Physical Review E
Abstract: The magnitude of the August 2003 blackout affecting the United States has put the challenges of energy transmission and distribution into limelight. Despite all the interest and concerted effort, the complexity and interconnectivity of the electric infrastructure precluded us for a long time from understanding why certain events happened. In this paper we study the power grid from a network perspective and determine its ability to transfer power between generators and consumers when certain nodes are disrupted. We find that the power grid is robust to most perturbations, yet disturbances affecting key transmision substations greatly reduce its ability to function. We emphasize that the global properties of the underlying network must be understood as they greatly affect local behavior.

...read more

Topics: Electric power transmission (54%), Blackout (50%)

1,261 Citations


Proceedings ArticleDOI: 10.1109/ARFTG.1988.323901
T. B. Arabi1, T. K. Sarkar1Institutions (1)
24 May 1988-
Abstract: The objective of this paper is to outline a methodology for the computation of the response of a multiconductor transmission line terminated by linear networks. The lines are embedded in a multilayered lossy dielectric media and have arbitrary cross sections, but uniform along the length. To check the accuracy of the theoretical results, extensive experimental verification has been carried out.

...read more

1,210 Citations


Open accessBook
01 Oct 2008-
Abstract: About The Authors. Preface. Acknowledgements. List of Symbols. PART I: INTRODUCTION TO POWER SYSTEMS. 1 Introduction . 1.1 Stability and Control of a Dynamic System. 1.2 Classification of Power System Dynamics. 1.3 Two Pairs of Important Quantities: Reactive Power/Voltage and Real Power/Frequency. 1.4 Stability of Power System. 1.5 Security of Power System. 1.6 Brief Historical Overview. 2. Power System Components. 2.1 Structure of the Electrical Power System. 2.2 Generating Units. 2.3 Substations. 2.4 Transmission and Distribution Network. 2.5 Protection. 2.6 Wide Area Measurement Systems. 3. The Power System in the Steady-State. 3.1. Transmission Lines. 3.2. Transformers. 3.3. Synchronous Generators. 3.4. Power System Loads. 3.5. Network Equations. 3.6. Power Flows in Transmission Networks. PART II: INTRODUCTION TO POWER SYSTEM DYNAMICS. 4. Electromagnetic Phenomena. 4.1. Fundamentals. 4.2. Three-Phase Short-Circuit on a Synchronous Generator. 4.3. Phase-to-Phase Short-Circuit. 4.4. Synchronization. 4.5. Short Circuit in a Network and its Clearing. 5. Electromechanical Dynamics - Small Disturbances. 5.1. Swing Equation. 5.2. Damping Power. 5.3. Equilibrium Points. 5.4. Steady-State Stability of Unregulated System. 5.5. Steady-State Stability of the Regulated System. 6. Electromechanical Dynamics - Large Disturbances. 6.1. Transient Stability. 6.2. Swings in Multi-Machine Systems. 6.3. Direct Method for Stability Assessment. 6.4. Synchronization. 6.5. Asynchronous Operation and Resynchronization. 6.6 Out-Of-Step Protection Systems. 6.7. Torsional Oscillations in the Drive Shaft. 7. Wind Power. 7.1 Wind Turbines. 7.2 Induction Machine Equivalent Circuit. 7.3 Induction Generator Coupled to the Grid. 7.4 Induction Generators with Slightly Increased Speed Range Via External Rotor Resistance. 7.5 Induction Generators with Significantly Increased Speed Range: DFIGs. 7.6 Fully Rated Converter Systems: Wide Speed Control. 7.7 Peak Power Tracking Of Variable Speed Wind Turbines. 7.8 Connections of Wind Farms. 7.9 Fault Behaviour of Induction Generators. 7.10 Influence of Wind Generators on Power System Stability. 8. Voltage Stability. 8.1. Network Feasibility. 8.2. Stability Criteria. 8.3. Critical Load Demand and Voltage Collapse. 8.4. Static Analysis. 8.5. Dynamic Analysis. 8.6. Prevention of Voltage Collapse. 8.7. Self-Excitation of a Generator Operating on a Capacitive Load. 9. Frequency Stability and Control. 9.1. Automatic Generation Control. 9.2. Stage I - Rotor Swings in the Generators. 9.3. Stage II - Frequency Drop. 9.4. Stage III - Primary Control. 9.5. STAGE IV - Secondary Control. 9.6. FACTS Devices in Tie-Lines. 10. Stability Enhancement. 10.1. Power System Stabilizers. 10.2. Fast Valving. 10.3. Braking Resistors. 10.4. Generator Tripping. 10.5. Shunt FACTS Devices. 10.6. Series Compensators. 10.7. Unified Power Flow Controller . PART III: ADVANCED TOPICS IN POWER SYSTEM DYNAMICS. 11. Advanced Power System Modelling. 11.1 Synchronous Generator. 11.2. Excitation Systems. 11.3. Turbines and Turbine Governors. 11.4. FACTS Devices. 12. Steady-State Stability of Multi-Machine System. 12.1. Mathematical Background. 12.2. Steady-State Stability of Unregulated System. 12.3. Steady-State Stability of The Regulated System. 13. Power System Dynamic Simulation. 13.1. Numerical Integration Methods. 13.2. The Partitioned-Solution. 13.3. The Simultaneous Solution Methods. 13.4. Comparison Between the Methods. 14. Power System Model Reduction - Equivalents. 14.1. Types of Equivalents. 14.2. Network Transformation. 14.3. Aggregation of Generating Units. 14.4. Equivalent Model of External Subsystem. 14.5. Coherency Recognition. 14.6. Properties of Coherency-Based Equivalents. Appendix. References. Index.

...read more

Topics: Electric power system (65%), Automatic Generation Control (64%), Power factor (64%) ...read more

1,158 Citations


Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202230
2021977
20201,362
20191,606
20181,707
20171,574

Top Attributes

Show by:

Topic's top 5 most impactful authors

Jinliang He

43 papers, 668 citations

Maria Cristina Tavares

31 papers, 344 citations

Bo Zhang

26 papers, 335 citations

Xiang Cui

20 papers, 316 citations

Farhad Rachidi

17 papers, 361 citations

Network Information
Related Topics (5)
Transmission line

35.3K papers, 339.6K citations

96% related
Transformer

97.7K papers, 569.6K citations

94% related
Power transmission

29.8K papers, 265.5K citations

93% related
Electric power system

133K papers, 1.7M citations

91% related
Voltage

296.3K papers, 1.7M citations

90% related