scispace - formally typeset
Search or ask a question
Topic

Electric resistance welding

About: Electric resistance welding is a research topic. Over the lifetime, 16761 publications have been published within this topic receiving 154851 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors investigated the effect of the welding conditions, including the positions of Al and Mg with respect to the welding tool, the tool travel speed, and the tool rotation speed on the weld strength.
Abstract: Because joining dissimilar metals is often difficult by fusion joining, interest has been growing rapidly in using friction stir welding (FSW), which is considered a revolutionary solid-state welding process, as a new way to join dissimilar metals such as Al alloys to Mg alloys, Cu, and steels. Butt FSW of Al to Mg alloys has been studied frequently recently, but the basic issue of how the welding conditions affect the resultant joint strength still is not well understood. Using the widely used alloys 6061 Al and AZ31 Mg, the current study investigated the effect of the welding conditions, including the positions of Al and Mg with respect to the welding tool, the tool travel speed, and the tool rotation speed on the weld strength. Unlike previous studies, the current study (1) determined the heat input by both torque and temperature measurements during FSW, (2) used color metallography with Al, Mg, Al3Mg2, and Al12Mg17 all shown in different colors to reveal clearly the formation of intermetallic compounds and material flow in the stir zone, which are known to affect the joint strength significantly, and (3) determined the windows for travel and rotation speeds to optimize the joint strength for various material positions. The current study demonstrated clearly that the welding conditions affect the heat input, which in turn affects (1) the formation of intermetallics and even liquid and (2) material flow. Thus, the effect of welding conditions in Al-to-Mg butt FSW on the joint strength now can be explained.

189 citations

Journal ArticleDOI
TL;DR: In this article, the potential for the use of lightweight materials (aluminum alloys, magnesium alloys and titanium alloys) in high volume vehicle manufacturing is discussed. And the feasibility of implementing these techniques in the industrial setup is discussed, and mechanical properties of welds such as hardness, shear and tensile strength are analyzed.

189 citations

Journal ArticleDOI
TL;DR: The behavior and effect of a plasma plume on the weld penetration are greatly different between CO2 laser welding and YAG, disk or fiber laser welding as discussed by the authors, and the effects of the power and the power density on the welding penetration are elucidated.

188 citations

Journal ArticleDOI
TL;DR: In this paper, an extensive overview of the resistance welding of thermoplastic composites is presented, focusing on the parameters that govern the welding process and the principal phenomena that affect the quality of the joint.
Abstract: This paper presents an extensive overview of resistance welding of thermoplastic composites. The objective is to provide a deeper insight into the nature of the resistance welding process and a summary of the vast experimental investigative effort put into it over the years. The main focus is set on the parameters that govern the welding process and the principal phenomena that affect the quality of the joint. The standard experimental procedure, the experimental set-up and the main evaluation methods are also looked at in detail. Finally, several alternative resistance welding methods that involve non-thermoplastic materials and offer possibilities for future applications are briefly reviewed.

188 citations

Journal ArticleDOI
TL;DR: In this article, a single-mode continuous-wave fiber laser was used in butt welding of Ti-6Al-4V to Inconel 718, and the results showed that the formation of intermetallic brittle phases and welding defects could be effectively restricted at welding conditions produced by the combination of higher laser power, higher welding speed and shifting the laser beam from the interface to the Inconels 718 alloy side.
Abstract: Challenges in dissimilar materials welding are the differences of physical and chemical properties between welding materials and the formation of intermetallic brittle phases resulting in the degradation of mechanical properties of welds. However, dissimilar materials welding is increasingly demanded from the industry as it can effectively reduce material costs and improve the design. In aerospace applications, Ti-6Al-4V titanium alloy and Inconel 718 nickel alloy have been widely used because of their superior corrosion resistance and mechanical properties. In this study, a single-mode continuous-wave fibre laser was used in butt welding of Ti-6Al-4V to Inconel 718. Investigations including metallurgical and mechanical examinations were carried out by means of varying processing parameters, such as laser power, welding speed and the laser beam offset position from the interface of the metals. Simple analytical modelling analysis was undertaken to explain the phenomena that occurred in this process. Results showed that the formation of intermetallic brittle phases and welding defects could be effectively restricted at welding conditions produced by the combination of higher laser power, higher welding speed and shifting the laser beam from the interface to the Inconel 718 alloy side. The amount of heat input and position of laser beam to improve the Ti-6Al-4V/Inconel 718 weld quality are suggested.

184 citations


Network Information
Related Topics (5)
Welding
206.5K papers, 1.1M citations
93% related
Alloy
171.8K papers, 1.7M citations
81% related
Machining
121.3K papers, 1M citations
80% related
Deformation (engineering)
41.5K papers, 899.7K citations
80% related
Microstructure
148.6K papers, 2.2M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023106
2022247
202168
2020162
2019184
2018245