scispace - formally typeset
Search or ask a question
Topic

Electric vehicle

About: Electric vehicle is a research topic. Over the lifetime, 51504 publications have been published within this topic receiving 556850 citations. The topic is also known as: EV & electrically-powered vehicle.


Papers
More filters
Journal ArticleDOI
TL;DR: A critical review of the available literature on the major thermal issues for lithium-ion batteries is presented in this article, where specific attention is paid to the effects of temperature and thermal management on capacity/power fade, thermal runaway, and pack electrical imbalance.
Abstract: Lithium-ion batteries are well-suited for fully electric and hybrid electric vehicles due to their high specific energy and energy density relative to other rechargeable cell chemistries. However, these batteries have not been widely deployed commercially in these vehicles yet due to safety, cost, and poor low temperature performance, which are all challenges related to battery thermal management. In this paper, a critical review of the available literature on the major thermal issues for lithium-ion batteries is presented. Specific attention is paid to the effects of temperature and thermal management on capacity/power fade, thermal runaway, and pack electrical imbalance and to the performance of lithium-ion cells at cold temperatures. Furthermore, insights gained from previous experimental and modeling investigations are elucidated. These include the need for more accurate heat generation measurements, improved modeling of the heat generation rate, and clarity in the relative magnitudes of the various thermal effects observed at high charge and discharge rates seen in electric vehicle applications. From an analysis of the literature, the requirements for lithium-ion thermal management systems for optimal performance in these applications are suggested, and it is clear that no existing thermal management strategy or technology meets all these requirements.

1,458 citations

Journal ArticleDOI
TL;DR: Simulation and experimental results show the superiority of the back-to-back diode-clamped converter over two-level pulsewidth-modulation-based drives.
Abstract: This paper presents transformerless multilevel power converters as an application for high-power and/or high-voltage electric motor drives. Multilevel converters: (1) can generate near-sinusoidal voltages with only fundamental frequency switching; (2) have almost no electromagnetic interference or common-mode voltage; and (3) are suitable for large voltampere-rated motor drives and high voltages. The cascade inverter is a natural fit for large automotive all-electric drives because it uses several levels of DC voltage sources, which would be available from batteries or fuel cells. The back-to-back diode-clamped converter is ideal where a source of AC voltage is available, such as in a hybrid electric vehicle. Simulation and experimental results show the superiority of these two converters over two-level pulsewidth-modulation-based drives.

1,398 citations

Journal ArticleDOI
TL;DR: In this article, a detailed review of the state of the art and future perspectives of Li-ion batteries with emphasis on this potential is presented, with a focus on electric vehicles.
Abstract: Lithium-ion batteries play an important role in the life quality of modern society as the dominant technology for use in portable electronic devices such as mobile phones, tablets and laptops. Beyond this application lithium-ion batteries are the preferred option for the emerging electric vehicle sector, while still underexploited in power supply systems, especially in combination with photovoltaics and wind power. As a technological component, lithium-ion batteries present huge global potential towards energy sustainability and substantial reductions in carbon emissions. A detailed review is presented herein on the state of the art and future perspectives of Li-ion batteries with emphasis on this potential.

1,353 citations

Journal ArticleDOI
TL;DR: An overview of permanent-magnet (PM) brushless (BL) drives for EVs and HEVs is presented, with emphasis on machine topologies, drive operations, and control strategies.
Abstract: With ever-increasing concerns on our environment, there is a fast growing interest in electric vehicles (EVs) and hybrid EVs (HEVs) from automakers, governments, and customers. As electric drives are the core of both EVs and HEVs, it is a pressing need for researchers to develop advanced electric-drive systems. In this paper, an overview of permanent-magnet (PM) brushless (BL) drives for EVs and HEVs is presented, with emphasis on machine topologies, drive operations, and control strategies. Then, three major research directions of the PM BL drive systems are elaborated, namely, the magnetic-geared outer-rotor PM BL drive system, the PM BL integrated starter-generator system, and the PM BL electric variable-transmission system.

1,281 citations

Journal ArticleDOI
01 Jan 2011
TL;DR: A conceptual framework to successfully integrate electric vehicles into electric power systems and several simulations are presented in order to illustrate the potential impacts/benefits arising from the electric vehicles grid integration under the referred framework.
Abstract: This paper presents a conceptual framework to successfully integrate electric vehicles into electric power systems. The proposed framework covers two different domains: the grid technical operation and the electricity markets environment. All the players involved in both these processes, as well as their activities, are described in detail. Additionally, several simulations are presented in order to illustrate the potential impacts/benefits arising from the electric vehicles grid integration under the referred framework, comprising steady-state and dynamic behavior analysis.

1,267 citations


Network Information
Related Topics (5)
Wind power
99K papers, 1.5M citations
89% related
Electric power system
133K papers, 1.7M citations
87% related
Renewable energy
87.6K papers, 1.6M citations
86% related
Battery (electricity)
169.5K papers, 1.9M citations
83% related
Control theory
299.6K papers, 3.1M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20243
20231,458
20223,009
20212,845
20204,387
20194,956