scispace - formally typeset
Search or ask a question
Topic

Electrical impedance

About: Electrical impedance is a research topic. Over the lifetime, 36015 publications have been published within this topic receiving 371891 citations. The topic is also known as: electrical impedance & complex impedance.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the effects of magnetic dispersion and loss are studied: constraints on the microwave permeability are used to estimate the effect of magnetic substrates on the achievable impedance bandwidth; the results are verified using full-wave simulations, and it is shown that the radiation quality factor is strongly minimized with the proposed substrate even in the presence of realistic losses.
Abstract: We discuss patch antenna miniaturization using magnetodielectric substrates. Recent results found in the literature reveal that with passive substrates advantages over conventional dielectric substrates can only be achieved if natural magnetic inclusions are embedded into the substrate. This observation is revised and the physical background is clarified. We present a detailed discussion concerning magnetic materials available in the microwave regime and containing natural magnetic constituents. The effects of magnetic dispersion and loss are studied: constraints on the microwave permeability are used to estimate the effect of magnetic substrates on the achievable impedance bandwidth. Microwave composites filled with thin ferromagnetic films are considered as a prospective antenna substrate. We calculate the impedance bandwidth of a lambda/2-patch antenna loaded with the proposed substrate, and challenge the results against those obtained with conventional dielectric substrates. The results are verified using full-wave simulations, and it is shown that the radiation quality factor is strongly minimized with the proposed substrate even in the presence of realistic losses. Estimates for the radiation efficiency are given as a function of the magnetic loss factor

185 citations

Journal ArticleDOI
TL;DR: In this paper, the impedance spectra obtained at the temperatures between −−20°C and 20°C showed drastic change in sizes with shifting of the characteristic frequency of the impedance response of solid electrolyte interphase.

185 citations

Journal ArticleDOI
TL;DR: In this article, the authors compare a usual homogenous distributed parameter circuit with a nonhomogenous one determined by curve matching with results from the electromagnetic field theory model, which is illustrated using numerical simulations.
Abstract: Vertical ground rods have been used extensively from the early days of electrical engineering for earth termination of electrical and lightning protection systems. They are usually represented with equivalent circuits with lumped and distributed parameters based on quasistatic approximation, which limits the upper frequency of their validity domain. However, lightning-related studies often require modeling in the megahertz frequency range. Also, emerging technologies, such as power-line communications, require analysis in frequency ranges even up to a few tens of megahertz. The rigorous electromagnetic (EM) field theory approach may be used for such frequency ranges, but equivalent circuits are needed for the usual network analysis methods. In this paper, we look at possibilities to construct simple equivalent circuits that can approximate or match results from the EM model. In particular, we compare a usual homogenous distributed parameter circuit with a nonhomogenous one determined by curve matching with results from the EM model. The analysis is illustrated using numerical simulations.

185 citations

Patent
28 Jul 2011
TL;DR: In this paper, a reflective impedance component is connected to a port of the composite right/left-handed transmission line, and operates at a predetermined operating frequency so that an impedance when the reflective impedance element is seen from the port becomes −jB.
Abstract: A reflective impedance element is connected to a port of a composite right/left-handed transmission line, and operates at a predetermined operating frequency so that an impedance when the reflective impedance element is seen from the port becomes a pure imaginary number jB. A reflective impedance component is connected to a port of the composite right/left-handed transmission line, and operates at the predetermined operating frequency so that an impedance when the reflective impedance element is seen from the port becomes −jB.

185 citations

Journal ArticleDOI
TL;DR: A closed form equation relating the RF power available from the antenna to the DC output voltage produced by a multi-stage rectifier enables the optimization of rectifier parameters for impedance matching with a low-cost printed antenna and shunt tuning inductor, in order to improve the RF to DC conversion efficiency and the operational distance of UHF RFID transponders.
Abstract: This paper presents a RF to DC conversion model for multi-stage rectifiers in UHF RFID transponders. An equation relating the RF power available from the antenna to the DC output voltage produced by a multi-stage rectifier is presented. The proposed model includes effects of the nonlinear forward voltage drop in diodes and impedance matching conditions of the antenna to rectifier interface. Fundamental frequency impedance approximation is used to analyze the resistance of rectifying diodes; parasitic resistive loss components are also included in the analysis of rectifier input resistance. The closed form equation shows insights into design parameter tradeoffs, such as power available from the antenna, antenna radiation resistance, the number of diodes, DC load current, parasitic resistive loss components, diode and capacitor sizes, and frequency of operation. Therefore, it enables the optimization of rectifier parameters for impedance matching with a low-cost printed antenna and shunt tuning inductor, in order to improve the RF to DC conversion efficiency and the operational distance of UHF RFID transponders. Three diode doublers and three multistage rectifiers were fabricated in a 130 nm CMOS process with custom no-mask added Schottky diodes. Measurements of the test IC are in good agreement with the proposed model.

185 citations


Network Information
Related Topics (5)
Voltage
296.3K papers, 1.7M citations
87% related
Capacitor
166.6K papers, 1.4M citations
85% related
Amplifier
163.9K papers, 1.3M citations
85% related
Dielectric
169.7K papers, 2.7M citations
81% related
Electromagnetic coil
187.8K papers, 1.1M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,514
20223,479
20211,009
20201,579
20191,924
20181,809