scispace - formally typeset
Search or ask a question
Topic

Electrical length

About: Electrical length is a research topic. Over the lifetime, 3107 publications have been published within this topic receiving 47543 citations.


Papers
More filters
Book
31 Oct 2000
TL;DR: Feeding Techniques and Modeling, Design and Analysis of Microstrip Antenna Arrays: Parallel and Series Feed Systems, and Theory and Design of Active Integrated Micro Strip Antenna Amplifiers.
Abstract: Microstrip Radiators: Various Microstrip Antenna Configurations. Feeding Techniques and Modeling. Applications. Radiation Field. Surface Waves and Photonic Band-Gap Structures. Analytical Models for Microstrip Antennas: Transmission Line Model. Cavity Model. Generalized Cavity Model. Multi-port Network Model (MNM). Radiation Fields. Aperture Admittance. Mutual Admittance. Model for Coaxial Probe in Microstrip Antennas. Comparison of Analytical Models. Full-Wave Analysis of Microstrip Antennas: Spectral Domain Full-Wave Analysis. Mixed-Potential Integral Equation Analysis. Finite-Difference Time Domain Analysis.Rectangular Microstrip Antenna: Models for Rectangular Patch Antenna. Design Considerations for Rectangular Patch Antennas. Tolerance Analysis of Rectangular Microstrip Antennas. Mechanical Tuning of Patch Antennas. Quarter-wave Rectangular Patch Antenna. Circular Disk and Ring Antennas: Analysis of a Circular Disk Microstrip Antenna. Design Considerations for Circular Disk Antennas. Semicircular Disk and Circular Sector Microstrip Antennas. Comparison Of Rectangular And Circular Disk Microstrip Antennas. Circular Ring or Annular Ring Microstrip Antenna. Circular Sector Microstrip Ring Antenna. Microstrip Ring Antennas of Non-Circular Shapes. Dipoles and Triangular Patch Antennas: Microstrip Dipole and Center-Fed Dipoles. Triangular Microstrip Patch Antenna. Design of an Equilateral Triangular Patch Antenna. Microstrip Slot Antennas: Microstrip-Fed Rectangular Slot Antennas. CPW-Fed Slot Antennas. Annular Slot Antennas. Tapered Slot Antennas (TSA). Comparison of Slot Antennas with Microstrip Antennas. Circularly Polarized Microstrip Antennas and Techniques: Various Types of Circularly Polarized Microstrip Antennas. Singly-Fed Circularly Polarized Microstrip Antennas. Dual-Orthagonal Feed Circularly Polarized Microstrip Antennas. Circularly Polarized Traveling-Wave Microstrip-Line Arrays. Bandwidth Enhancement Techniques. Sequentially Rotated Arrays. Broad-Banding of Microstrip Antennas: Effect of Substrate Parameters on Bandwidth. Selection of Suitable Patch Shape. Selection of Suitable Feeding Technique. Multi-Moding Techniques. Other Broadbanding Techniques. Multifrequency Operation. Loaded Microstrip Antennas and Applications: Polarization Diversity Using Microstrip Antennas. Frequency Agile Microstrip Antennas. Radiation Pattern Control of Microstrip Antennas. Loading Effect of a Short. Compact Patch Antennas. Planar Inverted F Antenna. Dual-Frequency Microstrip Antennas. Dual-Frequency Compact Microstrip Antennas. Active Integrated Microstrip Antennas: Classification of Active Integrated Microstrip Antennas. Theory and Design of Active Integrated Microstrip Antenna Oscillators. Theory and Design of Active Integrated Microstrip Antenna Amplifiers. Frequency Conversion Active Integrated Microstrip Antenna Theory and Design. Design and Analysis of Microstrip Antenna Arrays: Parallel and Series Feed Systems. Mutual Coupling. Design of Linear Arrays. Design of Planar Arrays. Monolithic Integrated Phased Arrays.

3,612 citations

01 Jan 1992
TL;DR: In this article, a brief overview of the basic characteristics of microstrip antennas is given, and the most significant developments in microstrip antenna technology have been made in the last several years.
Abstract: Microstrip antennas have been one of the most innovative topics in antenna theory and design in recent years, and are increasingly finding application in a wide range of modern microwave systems. This paper begins with a brief overview of the basic characteristics of microstrip antennas, and then concentrates on the most significant developments in microstrip antenna technology that have been made in the last several years. Emphasis is on new antenna configurations for improved electrical performance and manufacturability and on advances in the analytical modeling of microstrip antennas and arrays. >

1,604 citations

Book
01 Jan 1989
TL;DR: Analysis and design of circular microstrip elements micro Strip patch antennas circular polarization and bandwidth electromagnetically coupled dipoles multilayer configurations large bandwidth hybrid flat dipoles and arrays numerical analysis of microstrip patch antennas segmentation and desegmentation methods for microstrip antenna design transmission line model.
Abstract: Analysis and design of circular microstrip elements microstrip patch antennas circular polarization and bandwidth electromagnetically coupled dipoles multilayer configurations large bandwidth hybrid flat dipoles and arrays numerical analysis of microstrip patch antennas segmentation and desegmentation methods for microstrip antenna design transmission line model of microstrip antennas design and technology of low cost printed antennas analysis and design considerations of printed array antennas circularly polarized array antennas microstrip antenna feeds advances in substrate technology special measurement techniques for printed antennas CAD of microstrip and triplate systems resonant microstrip antenna elements and arrays applications of microstrip antennas monolithic conical conformal microstrip tracking antenna extensions and variations of the microstrip antenna concept.

1,501 citations

Journal ArticleDOI
TL;DR: In this article, a simple formula is proposed to predict the frequency corresponding to the lower edge of the bandwidth for each of these configurations, including square, rectangular, and hexagonal disc monopole antennas.
Abstract: The circular disc monopole (CDM) antenna has been reported to yield wide-impedance bandwidth. Experiments have been carried out on a CDM that has twice the diameter of the reported disc with similar results. New configurations are proposed such as elliptical (with different ellipticity ratios), square, rectangular, and hexagonal disc monopole antennas. A simple formula is proposed to predict the frequency corresponding to the lower edge of the bandwidth for each of these configurations. The elliptical disc monopole (EDM) with ellipticity ratio of 1.1 yields the maximum bandwidth from 1.21 GHz to more than 13 GHz for voltage standing wave ratio (VSWR)<2.

866 citations

Journal ArticleDOI
TL;DR: Fractal geometry involves a recursive generating methodology that results in contours with infinitely intricate fine structures, which can be used to miniaturize wire and patch antennas using fractals as mentioned in this paper.
Abstract: Fractal geometry involves a recursive generating methodology that results in contours with infinitely intricate fine structures. This geometry, which has been used to model complex objects found in nature such as clouds and coastlines, has space-filling properties that can be utilized to miniaturize antennas. These contours are able to add more electrical length in less volume. In this article, we look at miniaturizing wire and patch antennas using fractals. Fractals are profoundly intricate shapes that are easy to define. It is seen that even though the mathematical foundations call for an infinitely complex structure, the complexity that is not discernible for the particular application can be truncated. For antennas, this means that we can reap the rewards of miniaturizing an antenna using fractals without paying the price of having to manufacture an infinitely complex radiator. In fact, it is shown that the required number of generating iterations, each of which adds a layer of intricacy, is only a few. A primer on the mathematical bases of fractal geometry is also given, focusing especially on the mathematical properties that apply to the analysis of antennas. Also presented is an application of these miniaturized antennas to phased arrays. It is shown how these fractal antennas can be used in tightly packed linear arrays, resulting in phased arrays that can scan to wider angles while avoiding grating lobes.

724 citations


Network Information
Related Topics (5)
Dipole antenna
38K papers, 513.8K citations
95% related
Antenna (radio)
208K papers, 1.8M citations
95% related
Microstrip antenna
43.9K papers, 604.4K citations
95% related
Bandwidth (signal processing)
48.5K papers, 600.7K citations
82% related
Metamaterial
30.2K papers, 755.5K citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231
202214
202139
202062
201978
201874