scispace - formally typeset
Search or ask a question

Showing papers on "Electricity generation published in 2011"


Journal ArticleDOI
TL;DR: In this article, the impact of different levels of plug-in electric vehicle penetration on distribution network investment and incremental energy losses is evaluated based on the use of a large-scale distribution planning model which is used to analyze two real distribution areas.
Abstract: Plug-in electric vehicles (PEVs) present environmental and energy security advantages versus conventional gasoline vehicles. In the near future, the number of plug-in electric vehicles will likely grow significantly in the world. Despite the aforementioned advantages, the connection of PEV to the power grid poses a series of new challenges for electric utilities. This paper proposes a comprehensive approach for evaluating the impact of different levels of PEV penetration on distribution network investment and incremental energy losses. The proposed approach is based on the use of a large-scale distribution planning model which is used to analyze two real distribution areas. Obtained results show that depending on the charging strategies, investment costs can increase up to 15% of total actual distribution network investment costs, and energy losses can increase up to 40% in off-peak hours for a scenario with 60% of total vehicles being PEV.

1,113 citations


Journal ArticleDOI
TL;DR: In this paper, the levelized cost of electricity (LCOE) of solar photovoltaic (PV) generation is compared to other electricity generation technologies. But there is a lack of clarity of reporting assumptions, justifications and degree of completeness in LCOE calculations, which produces widely varying and contradictory results.
Abstract: As the solar photovoltaic (PV) matures, the economic feasibility of PV projects are increasingly being evaluated using the levelized cost of electricity (LCOE) generation in order to be compared to other electricity generation technologies. Unfortunately, there is lack of clarity of reporting assumptions, justifications and degree of completeness in LCOE calculations, which produces widely varying and contradictory results. This paper reviews the methodology of properly calculating the LCOE for solar PV, correcting the misconceptions made in the assumptions found throughout the literature. Then a template is provided for better reporting of LCOE results for PV needed to influence policy mandates or make invest decisions. A numerical example is provided with variable ranges to test sensitivity, allowing for conclusions to be drawn on the most important variables. Grid parity is considered when the LCOE of solar PV is comparable with grid electrical prices of conventional technologies and is the industry target for cost-effectiveness. Given the state of the art in the technology and favorable financing terms it is clear that PV has already obtained grid parity in specific locations and as installed costs continue to decline, grid electricity prices continue to escalate, and industry experience increases, PV will become an increasingly economically advantageous source of electricity over expanding geographical regions.

1,048 citations


Posted Content
TL;DR: The methodology of properly calculating the levelized cost of electricity for solar PV is reviewed, correcting the misconceptions made in the assumptions found throughout the literature and a template is provided for better reporting of LCOE results for PV needed to influence policy mandates or make invest decisions.
Abstract: As the solar photovoltaic (PV) matures, the economic feasibility of PV projects are increasingly being evaluated using the levelized cost of electricity (LCOE) generation in order to be compared to other electricity generation technologies. Unfortunately, there is lack of clarity of reporting assumptions, justifications and degree of completeness in LCOE calculations, which produces widely varying and contradictory results. This paper reviews the methodology of properly calculating the LCOE for solar PV, correcting the misconceptions made in the assumptions found throughout the literature. Then a template is provided for better reporting of LCOE results for PV needed to influence policy mandates or make invest decisions. A numerical example is provided with variable ranges to test sensitivity, allowing for conclusions to be drawn on the most important variables. Grid parity is considered when the LCOE of solar PV is comparable with grid electrical prices of conventional technologies and is the industry target for cost-effectiveness. Given the state of the art in the technology and favorable financing terms it is clear that PV has already obtained grid parity in specific locations and as installed costs continue to decline, grid electricity prices continue to escalate, and industry experience increases, PV will become an increasingly economically advantageous source of electricity over expanding geographical regions.

1,006 citations


Journal ArticleDOI
TL;DR: The most-adopted wind-turbine systems, the adopted generators, the topologies of the converters, the generator control and grid connection issues, as well as their arrangement in wind parks are reviewed.
Abstract: Multimegawatt wind-turbine systems, often organized in a wind park, are the backbone of the power generation based on renewable-energy systems. This paper reviews the most-adopted wind-turbine systems, the adopted generators, the topologies of the converters, the generator control and grid connection issues, as well as their arrangement in wind parks.

860 citations


Journal ArticleDOI
TL;DR: In this article, the authors examined the changes to the electric power system required to incorporate high penetration of variable wind and solar electricity generation in a transmission constrained grid, where different mixes of wind, solar photovoltaic and concentrating solar power meet up to 80% of the electric demand.

792 citations


Journal ArticleDOI
TL;DR: The smart grid model offers the best potential for maximum utilization of RESs to reduce cost and emission from the electricity industry.
Abstract: The electricity and transportation industries are the main sources of greenhouse gas emissions on Earth. Renewable energy, mainly wind and solar, can reduce emission from the electricity industry (mainly from power plants). Likewise, next-generation plug-in vehicles, which include plug-in hybrid electric vehicles (EVs) and EVs with vehicle-to-grid capability, referred to as “gridable vehicles” (GVs) by the authors, can reduce emission from the transportation industry. GVs can be used as loads, energy sources (small portable power plants), and energy storages in a smart grid integrated with renewable energy sources (RESs). Smart grid operation to reduce both cost and emission simultaneously is a very complex task considering smart charging and discharging of GVs in a distributed energy source and load environment. If a large number of GVs is connected to the electric grid randomly, peak load will be very high. The use of traditional thermal power plants will be economically and environmentally expensive to support the electrified transportation. The intelligent scheduling and control of GVs as loads and/or sources have great potential for evolving a sustainable integrated electricity and transportation infrastructure. Cost and emission reductions in a smart grid by maximum utilization of GVs and RESs are presented in this paper. Possible models for GV applications, including the smart grid model, are given, and results are presented. The smart grid model offers the best potential for maximum utilization of RESs to reduce cost and emission from the electricity industry.

762 citations


Journal ArticleDOI
TL;DR: There is little doubt that power production by renewable energies, energy storage by hydrogen, and electric power transportation and distribution by smart electric grids will play an essential role in phasing out fossil fuels.
Abstract: Hydrogen is often proposed as the fuel of the future, but the transformation from the present fossil fuel economy to a hydrogen economy will need the solution of numerous complex scientific and technological issues, which will require several decades to be accomplished. Hydrogen is not an alternative fuel, but an energy carrier that has to be produced by using energy, starting from hydrogen-rich compounds. Production from gasoline or natural gas does not offer any advantage over the direct use of such fuels. Production from coal by gasification techniques with capture and sequestration of CO₂ could be an interim solution. Water splitting by artificial photosynthesis, photobiological methods based on algae, and high temperatures obtained by nuclear or concentrated solar power plants are promising approaches, but still far from practical applications. In the next decades, the development of the hydrogen economy will most likely rely on water electrolysis by using enormous amounts of electric power, which in its turn has to be generated. Producing electricity by burning fossil fuels, of course, cannot be a rational solution. Hydroelectric power can give but a very modest contribution. Therefore, it will be necessary to generate large amounts of electric power by nuclear energy of by renewable energies. A hydrogen economy based on nuclear electricity would imply the construction of thousands of fission reactors, thereby magnifying all the problems related to the use of nuclear energy (e.g., safe disposal of radioactive waste, nuclear proliferation, plant decommissioning, uranium shortage). In principle, wind, photovoltaic, and concentrated solar power have the potential to produce enormous amounts of electric power, but, except for wind, such technologies are too underdeveloped and expensive to tackle such a big task in a short period of time. A full development of a hydrogen economy needs also improvement in hydrogen storage, transportation and distribution. Hydrogen and electricity can be easily interconverted by electrolysis and fuel cells, and which of these two energy carriers will prevail, particularly in the crucial field of road vehicle powering, will depend on the solutions found for their peculiar drawbacks, namely storage for electricity and transportation and distribution for hydrogen. There is little doubt that power production by renewable energies, energy storage by hydrogen, and electric power transportation and distribution by smart electric grids will play an essential role in phasing out fossil fuels.

715 citations


Journal ArticleDOI
TL;DR: In this paper, a review of hybrid renewable/alternative energy (RE/AE) power generation systems focusing on energy sustainability is presented, highlighting some important issues and challenges in the design and energy management of hybrid RE/AE systems.
Abstract: This paper, prepared by a special task force of the IEEE PES Renewable Technologies Subcommittee, is a review of hybrid renewable/alternative energy (RE/AE) power generation systems focusing on energy sustainability. It highlights some important issues and challenges in the design and energy management of hybrid RE/AE systems. System configurations, generation unit sizing, storage needs, and energy management and control are addressed. Statistics on the current status and future trend of renewable power generation, as well as some critical challenges facing the widespread deployment of RE/AE power generation technologies and vision for future research in this area are also presented. The comprehensive list of references given at the end of the paper should be helpful to researchers working in this area.

701 citations


Journal ArticleDOI
TL;DR: A chronological review of the volumetric receivers of most interest for electricity production, identifying their different configurations, materials and real and expected results, and pointing out their main advantages and conclusions based on the multitude of international and national projects reports and references.

523 citations


Journal ArticleDOI
TL;DR: In this paper, the authors examine the present scenario of electricity production and investigate whether an electricity powered world is possible, indicating which primary energy forms should be preferably utilized, indicating that most of the primary energy used by mankind, including that employed to generate electricity, comes from fossil fuels, which need to be phased out because they bring about severe damage to climate, environment, and human health.
Abstract: The purpose of this review is examination of the present scenario of electricity production and investigation of whether an electricity powered world is possible, indicating which primary energy forms should be preferably utilized. Currently, most of the primary energy used by mankind, including that employed to generate electricity, comes from fossil fuels, which need to be phased out because they bring about severe damage to climate, environment, and human health and, additionally, their stock will be largely depleted during the present century. All the energy technologies poised to replace those based on fossil fuels, namely nuclear and renewables (wind, hydro, concentrated solar power, photovoltaics, biomass, geothermal, tidal, wave) essentially produce electricity, and this suggests that we will progressively shift to an electricity-based economy over the course of the 21st century. The economic, technical, ethical and social issues entangled with nuclear technologies and the unexpectedly fast expansion of renewable energies (particularly wind and solar) point to an increasingly important role of the latter in electricity generation. The present one way utility-to-customer energy system, designed over one century ago, will need substantial reshaping to enable the build up of a smart grid capable of dealing with variable renewable supply and fluctuating end-user demand by exchange of information between customer and utility. To accomplish this result, effort in research and development of storage devices and facilities on the small (e.g., batteries, capacitors) and large (e.g., pumped hydro, compressed air storage, electrolytic hydrogen) scale is needed. In the medium and long term, the expansion of electricity production will also likely lead to progressive replacement of internal combustion engines with electric motors in the automotive sector, accompanied by a shift from individual to mass transportation systems. We have still a long way out of the fossil fuel era, but this challenge can be won only if carbon-free electricity largely replaces the direct combustion of irreplaceable and climate-altering fossil fuel resources.

392 citations


Journal ArticleDOI
TL;DR: In this article, a survey regarding methods and tools presently available to determine potential and exploitable energy in the most important renewable sectors (i.e., solar, wind, wave, biomass and geothermal energy) is presented.
Abstract: The recent statements of both the European Union and the US Presidency pushed in the direction of using renewable forms of energy, in order to act against climate changes induced by the growing concentration of carbon dioxide in the atmosphere. In this paper, a survey regarding methods and tools presently available to determine potential and exploitable energy in the most important renewable sectors (i.e., solar, wind, wave, biomass and geothermal energy) is presented. Moreover, challenges for each renewable resource are highlighted as well as the available tools that can help in evaluating the use of a mix of different sources.

Journal ArticleDOI
TL;DR: In this paper, the impact of plug-in hybrid electric vehicles (PHEVs) on the power grid is investigated. And the effects of three suggested policies on the derived PHEV charging load profiles are examined.
Abstract: Greenhouse gas emissions, air pollution in urban areas, and dependence on fossil fuels are among the challenges threatening the sustainable development of the transportation sector. Plug-in hybrid electric vehicle (PHEV) technology is one of the most promising solutions to tackle the situation. While PHEVs partially rely on electricity from the power grid, they raise concerns about their negative impacts on power generation, transmission, and distribution installations. On the other hand, they have the potential to be used as a distributed energy storage system for the grid. Therefore, they can pave the way for a more sustainable power grid in which renewable resources are widely employed. Positive and negative impacts of PHEVs on the power grid cannot be thoroughly examined unless extensive data on the utilization of each individual PHEV are available. For instance, in order to estimate the aggregated impact of PHEVs on the electricity demand profile, one needs to know 1) when each PHEV would begin its charging process, 2) how much electrical energy it would require, and 3) how much power would be needed. This paper extracts and analyzes the data that are available through national household travel surveys (NHTS). Three charging scenarios are considered in order to obtain various PHEV charging load profiles (PCLPs). Further, the characteristics of each developed PCLP are studied. Finally, the effects of three suggested policies on the derived PCLPs are examined.

Journal ArticleDOI
TL;DR: Asymmetric configurations of carbon electrodes and transition metal oxides (TOMO) have been used in this paper to achieve high specific energy and low specific power of aqueous electrolyte.
Abstract: Ongoing technological advances in such disparate areas as consumer electronics, transportation, and energy generation and distribution are often hindered by the capabilities of current energy storage/conversion systems, thereby driving the search for high-performance power sources that are also economically viable, safe to operate, and have limited environmental impact. Electrochemical capacitors (ECs) are a class of energy-storage devices that fill the gap between the high specific energy of batteries and the high specific power of conventional electrostatic capacitors. The most widely available commercial EC, based on a symmetric configuration of two high-surface-area carbon electrodes and a nonaqueous electrolyte, delivers specific energies of up to ∼6 Whkg–1 with sub-second response times. Specific energy can be enhanced by moving to asymmetric configurations and selecting electrode materials (e.g., transition metal oxides) that store charge via rapid and reversible faradaic reactions. Asymmetric EC designs also circumvent the main limitation of aqueous electrolytes by extending their operating voltage window beyond the thermodynamic 1.2 V limit to operating voltages approaching ∼2 V, resulting in high-performance ECs that will satisfy the challenging power and energy demands of emerging technologies and in a more economically and environmentally friendly form than conventional symmetric ECs and batteries.

Journal ArticleDOI
TL;DR: In this paper, the technical and economic potential of energy-intensive industries to provide demand-side management (DSM) in electricity and balancing markets through 2030 is investigated, based on an extension of an existing European electricity market model, simulations are used here to make long-term forecasts for market prices, dispatch and investments in the electricity markets through linear optimization.

Journal ArticleDOI
TL;DR: A review of the literature on power and supply sector developments and analyzes the role of modeling and optimization in this sector as well as the future prospective of optimization modeling as a tool for sustainable energy systems is presented in this paper.
Abstract: Electricity is conceivably the most multipurpose energy carrier in modern global economy, and therefore primarily linked to human and economic development. Energy sector reform is critical to sustainable energy development and includes reviewing and reforming subsidies, establishing credible regulatory frameworks, developing policy environments through regulatory interventions, and creating market-based approaches. Energy security has recently become an important policy driver and privatization of the electricity sector has secured energy supply and provided cheaper energy services in some countries in the short term, but has led to contrary effects elsewhere due to increasing competition, resulting in deferred investments in plant and infrastructure due to longer-term uncertainties. On the other hand global dependence on fossil fuels has led to the release of over 1100 GtCO2 into the atmosphere since the mid-19th century. Currently, energy-related GHG emissions, mainly from fossil fuel combustion for heat supply, electricity generation and transport, account for around 70% of total emissions including carbon dioxide, methane and some traces of nitrous oxide. This multitude of aspects play a role in societal debate in comparing electricity generating and supply options, such as cost, GHG emissions, radiological and toxicological exposure, occupational health and safety, employment, domestic energy security, and social impressions. Energy systems engineering provides a methodological scientific framework to arrive at realistic integrated solutions to complex energy problems, by adopting a holistic, systems-based approach, especially at decision making and planning stage. Modeling and optimization found widespread applications in the study of physical and chemical systems, production planning and scheduling systems, location and transportation problems, resource allocation in financial systems, and engineering design. This article reviews the literature on power and supply sector developments and analyzes the role of modeling and optimization in this sector as well as the future prospective of optimization modeling as a tool for sustainable energy systems.

Journal ArticleDOI
TL;DR: In this article, the authors investigated three methods that can be used to reduce the fluctuations in the power generated from a large customer-owned photovoltaic (PV) system, in the order of megawatts.
Abstract: Photovoltaic (PV) systems are presently allowed to inject into the grid all the power they can generate. However, in the near future, utilities are expected to impose additional regulations and restrictions on the power being injected by large centralized PV systems because of their possible adverse impacts. One of the main issues associated with large PV systems is the fluctuation of their output power. These fluctuations can negatively impact the performance of the electric networks to which these systems are connected, especially if the penetration levels of these systems are high. Moreover, the fluctuations in the power of PV systems make it difficult to predict their output, and thus, to consider them when scheduling the generating units in the network. The main objective of this paper is to investigate some methods that can be used to reduce the fluctuations in the power generated from a large customer-owned PV system, in the order of megawatts. This paper focuses on three methods: 1) the use of battery storage systems; 2) the use of dump loads; and 3) curtailment of the generated power by operating the power-conditioning unit of the PV system below the maximum power point. The emphasis in the analysis presented in this paper is on investigating the impacts of implementing these methods on the economical benefits that the PV system owner gains. To estimate the maximum revenues gained by the system owner, an linear programming optimization problem is formulated and solved. Moreover, the effect of varying different parameters of the problem is investigated through sensitivity analysis.

Journal ArticleDOI
TL;DR: In this paper, a review of micro-scale combustion and micro-thermophotovoltaic power generators is presented, and a brief review is made to other micro power generators.

Journal ArticleDOI
TL;DR: In this article, a step-by-step approach for wave and marine current ocean energy conversion is presented, depicting results based on experimental and field observations on device fundamentals, modelling approaches, project development issues.
Abstract: Ocean energy has many forms, encompassing tides, surface waves, ocean circulation, salinity and thermal gradients. This paper will considers two of these, namely those found in the kinetic energy resource in tidal streams or marine currents, driven by gravitational effects, and the resources in wind-driven waves, derived ultimately from solar energy. There is growing interest around the world in the utilisation of wave energy and marine currents (tidal stream) for the generation of electrical power. Marine currents are predictable and could be utilised without the need for barrages and the impounding of water, whilst wave energy is inherently less predictable, being a consequence of wind energy. The conversion of these resources into sustainable electrical power offers immense opportunities to nations endowed with such resources and this work is partially aimed at addressing such prospects. The research presented conveys the current status of wave and marine current energy conversion technologies addressing issues related to their infancy (only a handful being at the commercial prototype stage) as compared to others such offshore wind. The work establishes a step-by-step approach that could be used in technology and project development, depicting results based on experimental and field observations on device fundamentals, modelling approaches, project development issues. It includes analysis of the various pathways and approaches needed for technology and device or converter deployment issues. As most technology developments are currently UK based, the paper also discusses the UK's financial mechanisms available to support this area of renewable energy, highlighting the needed economic approaches in technology development phases. Examination of future prospects for wave and marine current ocean energy technologies are also discussed.

Journal ArticleDOI
TL;DR: The history, current status, investment cost, employment, industry and installation of offshore wind energy in Europe are investigated in detail, and also compared to its onshore counterpart as discussed by the authors.
Abstract: Wind power, as a renewable source of energy, produces no emissions and is an excellent alternative in environmental terms to conventional electricity production based on fuels such as oil, coal or natural gas. At present, the vast majority of wind power is generated from onshore wind farms. However, their growth is limited by the lack of inexpensive land near major population centers and the visual pollution caused by large wind turbines. Comparing with onshore wind power, offshore winds tend to flow at higher speeds than onshore winds, thus it allows turbines to produce more electricity. Estimates predict a huge increase in wind energy development over the next 20 years. Much of this development will be offshore wind energy. This implies that great investment will be done in offshore wind farms over the next decades. For this reason, offshore wind farms promise to become an important source of energy in the near future. In this study, history, current status, investment cost, employment, industry and installation of offshore wind energy in Europe are investigated in detail, and also compared to its onshore counterpart.

Journal ArticleDOI
TL;DR: A deterministic algorithm makes use of a list of commercially available system devices to suggest the optimal number and type of units ensuring that the total cost of the system is minimized while guaranteeing the availability of the energy.

Journal ArticleDOI
TL;DR: In this article, the authors proposed a control strategy to mitigate the impact of reduced inertia due to significant DFIG penetration in a large power system by adjusting pitch compensation and maximum active power order to improve inertial response during the transient with response to drop in grid frequency.
Abstract: The present work is based on developing a control strategy to mitigate the impact of reduced inertia due to significant DFIG penetration in a large power system. The paper aims to design a supplementary control for the DFIG power converters such that the effective inertia contributed by these wind generators to the system is increased. The paper also proposes the idea of adjusting pitch compensation and maximum active power order to the converter in order to improve inertial response during the transient with response to drop in grid frequency. Results obtained on a large realistic power system indicate that the frequency nadir following a large power impact in the form of generators dropping out is effectively improved with the proposed control strategy. The proposed control is also validated against the sudden wind speed change in the form of wind gust downs and wind ramp downs occurring in conjunction with the generators dropping out. A beneficial impact in terms of damping power system oscillations is also observed, which is validated by eigenvalue analysis. The affected mode is then excited with a large disturbance in time domain. The damping improvement observed in time domain and subsequent Prony analysis support the result obtained from eigenvalue analysis.

ReportDOI
01 Mar 2011
TL;DR: In this article, the authors consolidate the various primary literature estimates of water use during the generation of electricity by conventional and renewable electricity generating technologies in the United States to more completely convey the variability and uncertainty associated with water use in electricity generation technologies.
Abstract: Various studies have attempted to consolidate published estimates of water use impacts of electricity generating technologies, resulting in a wide range of technologies and values based on different primary sources of literature. The goal of this work is to consolidate the various primary literature estimates of water use during the generation of electricity by conventional and renewable electricity generating technologies in the United States to more completely convey the variability and uncertainty associated with water use in electricity generating technologies.

Journal ArticleDOI
TL;DR: In this paper, an analytical hierarchy process (AHP) has been used for the first time for the energy sector of Pakistan for the selection and prioritization of various renewable energy technologies for electricity generation.

Journal ArticleDOI
TL;DR: In this article, the authors identify and appraise 32 impacts from these phases, under the themes of land use intensity, human health and wellbeing, plant and animal life, geohydrological resources, and climate change.
Abstract: a b s t r a c t Large-scale solar power plants are being developed at a rapid rate, and are setting up to use thousands or millions of acres of land globally. The environmental issues related to the installation and operation phases of such facilities have not, so far, been addressed comprehensively in the literature. Here we identify and appraise 32 impacts from these phases, under the themes of land use intensity, human health and wellbeing, plant and animal life, geohydrological resources, and climate change. Our appraisals assume that electricity generated by new solar power facilities will displace electricity from traditional U.S. generation technologies. Altogether we find 22 of the considered 32 impacts to be beneficial. Of the remaining 10 impacts, 4 are neutral, and 6 require further research before they can be appraised. None of the impacts are negative relative to traditional power generation. We rank the impacts in terms of priority, and find all the high-priority impacts to be beneficial. In quantitative terms, large-scale solar power plants occupy the same or less land per kW h than coal power plant life cycles. Removal of forests to make space for solar power causes CO2 emissions as high as 36 g CO2 kW h−1, which is a significant contribution to the life cycle CO2 emissions of solar power, but is still low compared to CO2 emissions from coal-based electricity that are about 1100 g CO2 kW h−1.

Journal ArticleDOI
TL;DR: In this paper, the authors examined the impact of charging EVs on electricity demand and infrastructure for generation and distribution in the Netherlands, and found that the total cost of ownership (TCO) of current EV are uncompetitive with regular cars and series hybrid cars by more than 800 € year−1.

Journal ArticleDOI
TL;DR: In this article, a low frequency resonator impacts a high frequency energy harvesting resonator, resulting in energy harvesting predominantly at the system's coupled vibration frequency, and a reduced mechanical damping ratio during coupled vibration enables increased electrical power generation as compared with conventional technology.
Abstract: This paper presents experiments and models of an energy harvesting device in which a low frequency resonator impacts a high frequency energy harvesting resonator, resulting in energy harvesting predominantly at the system's coupled vibration frequency. Analysis shows that a reduced mechanical damping ratio during coupled vibration enables increased electrical power generation as compared with conventional technology. Experiments demonstrate that the efficiency of electrical power transfer is significantly improved with the coupled vibration approach. An average power output of 0.43 mW is achieved under 0.4g acceleration at 8.2 Hz, corresponding to a power density of 25.5 µW cm − 3. The measured power and power density at the resonant frequency are respectively 4.8 times and 13 times the measured peak values for a conventional harvester created from a low frequency beam alone.

Book
12 Oct 2011
TL;DR: In this paper, the authors present an overview of the development of windmills and their components, including wind blade geometry, performance characteristics, scaling wind turbines and rules of similarity.
Abstract: Questionnaire.- Introduction.- Historical development of windmills.- Design and components .- The wind blade geometry.- Calculation of performance characteristics.- Scaling wind turbines and rules of similarity.- Structural dynamics.- Guidelines and analysis procedures.- Wind pump systems.- Electricity generation.- Supervisory and control systems.- Concepts of electricity generation.- Operation at the interconnected grid.- Planning, operation and economics.- Offshore windfarms.

Journal ArticleDOI
TL;DR: In this paper, a simple fuzzy-based frequency control method is proposed for the PV generator in a PV-diesel hybrid system without the smoothing of PV output power fluctuations.
Abstract: A photovoltaic (PV) system's output power fluctuates according to the weather conditions. Fluctuating PV power causes frequency deviations in the power utilities when the penetration is large. Usually, an energy storage system (ESS) is used to smooth the PV output power fluctuations and then the smoothed power is supplied to the utility. In this paper, a simple fuzzy-based frequency-control method is proposed for the PV generator in a PV-diesel hybrid system without the smoothing of PV output power fluctuations. By means of the proposed method, output power control of a PV generator considering the conditions of power utilities and the maximizing of energy capture are achieved. Here, fuzzy control is used to generate the PV output power command. This fuzzy control has average insolation, change of insolation, and frequency deviation as inputs. The proposed method is compared with a maximum power point tracking control-based method and with an ESS-based conventional control method. The numerical simulation results show that the proposed method is effective in providing frequency control and also delivers power near the maximum PV power level.

Journal ArticleDOI
TL;DR: In this article, the authors present a full ex-post empirical analysis, by looking at use of technologies and hourly electricity prices for 2005-2009 in Spain, to study the effects that the introduction of renewable electricity and cogeneration has had on wholesale electricity prices.

Journal ArticleDOI
TL;DR: In this article, a new DEA (Data Envelopment Analysis) approach was proposed to measure the unified (operational and environmental) efficiency of Japanese fossil fuel power generation, and the proposed approach incorporated not only the output separation but also the input separation within a computational framework of DEA non-radial measurement.