scispace - formally typeset
Search or ask a question
Topic

Electrochemical energy conversion

About: Electrochemical energy conversion is a research topic. Over the lifetime, 1606 publications have been published within this topic receiving 89367 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This review describes some recent developments in the discovery of nanoelectrolytes and nanoeLECTrodes for lithium batteries, fuel cells and supercapacitors and the advantages and disadvantages of the nanoscale in materials design for such devices.
Abstract: New materials hold the key to fundamental advances in energy conversion and storage, both of which are vital in order to meet the challenge of global warming and the finite nature of fossil fuels. Nanomaterials in particular offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. This review describes some recent developments in the discovery of nanoelectrolytes and nanoelectrodes for lithium batteries, fuel cells and supercapacitors. The advantages and disadvantages of the nanoscale in materials design for such devices are highlighted.

8,157 citations

Journal ArticleDOI
TL;DR: Batteries, fuel cells and supercapacitors belong to the same family of energy conversion devices and are needed to service the wide energy requirements of various devices and systems.
Abstract: Electrochemical energy conversion devices are pervasive in our daily lives. Batteries, fuel cells and supercapacitors belong to the same family of energy conversion devices. They are all based on the fundamentals of electrochemical thermodynamics and kinetics. All three are needed to service the wide energy requirements of various devices and systems. Neither batteries, fuel cells nor electrochemical capacitors, by themselves, can serve all applications.

6,230 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe some recent developments in nanostructured anode and cathode materials for lithium-ion batteries, addressing the benefits of nanometer-size effects, the disadvantages of 'nano', and strategies to solve these issues such as nano/micro hierarchical structures and surface coatings, as well as developments in the discovery of nano-structured Pt-based electrocatalysts for direct methanol fuel cells (DMFCs).
Abstract: One of the greatest challenges for our society is providing powerful electrochemical energy conversion and storage devices. Rechargeable lithium-ion batteries and fuel cells are amongst the most promising candidates in terms of energy densities and power densities. Nanostructured materials are currently of interest for such devices because of their high surface area, novel size effects, significantly enhanced kinetics, and so on. This Progress Report describes some recent developments in nanostructured anode and cathode materials for lithium-ion batteries, addressing the benefits of nanometer-size effects, the disadvantages of 'nano', and strategies to solve these issues such as nano/micro hierarchical structures and surface coatings, as well as developments in the discovery of nanostructured Pt-based electrocatalysts for direct methanol fuel cells (DMFCs). Approaches to lowering the cost of Pt catalysts include the use of i) novel nanostructures of Pt, ii) new cost-effective synthesis routes, iii) binary or multiple catalysts, and iv) new catalyst supports.

2,017 citations

Journal ArticleDOI
TL;DR: Li-air and Zn-air batteries have been studied extensively in the past decade as mentioned in this paper, with the aim of providing a better understanding of the new electrochemical systems, and metal-air battery with conversion chemistry is a promising candidate.
Abstract: In the past decade, there have been exciting developments in the field of lithium ion batteries as energy storage devices, resulting in the application of lithium ion batteries in areas ranging from small portable electric devices to large power systems such as hybrid electric vehicles. However, the maximum energy density of current lithium ion batteries having topatactic chemistry is not sufficient to meet the demands of new markets in such areas as electric vehicles. Therefore, new electrochemical systems with higher energy densities are being sought, and metal-air batteries with conversion chemistry are considered a promising candidate. More recently, promising electrochemical performance has driven much research interest in Li-air and Zn-air batteries. This review provides an overview of the fundamentals and recent progress in the area of Li-air and Zn-air batteries, with the aim of providing a better understanding of the new electrochemical systems.

1,863 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the advantages and disadvantages of both low-temperature and high temperature fuel cells and propose a modularization of fuel cells, which makes them quite flexible as the power needed can easily be attained by changing the number of modules.
Abstract: Fuel cells will make a valuable contribution to future power generation facilities. They improve the flexibility and increase the options for many applications, such as distributed power, vehicle propulsion, and portable devices. Their main property is the high electrical efficiency compared to other energy conversion devices. Both the low-temperature and the high-temperature fuel cells have their advantages and disadvantages depending on the application. Sometimes, they can both be implemented in similar applications. The modularity of fuel cells makes them quite flexible as the power needed can easily be attained by changing the number of modules. Twenty years ago, mainly universities and research institutions but only a few companies conducted fuel cell research working on the fundamentals of fuel cells. Nowadays due to the commercial interest innumerable research groups and companies have fuel cell activities ranging from the investigation of catalysts (both improving existing catalyst systems as searching for new catalysts), the development of novel membranes for PEMFCs and DMFCs, to the development of other components for fuel cells. Optimisation of flow field structures, backing layers, and other components of the single cells have intensified. (orig.)

1,392 citations


Network Information
Related Topics (5)
Anode
139.4K papers, 2.1M citations
84% related
Photocatalysis
67K papers, 2.1M citations
81% related
Graphene
144.5K papers, 4.9M citations
80% related
Carbon nanotube
109K papers, 3.6M citations
80% related
Nanoparticle
85.9K papers, 2.6M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202382
2022180
2021160
2020144
2019134
2018101