scispace - formally typeset
Search or ask a question
Topic

Electrochromism

About: Electrochromism is a research topic. Over the lifetime, 13097 publications have been published within this topic receiving 294637 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the influence of the oxygen flow rate (φ) during r.f. sputtering of molybdenum metal targets on the resulting MoOx thin films was analyzed.

112 citations

Journal ArticleDOI
TL;DR: A generic electrochromic strategy for ensuring the reproducibility and renewability of SERS substrates is demonstrated, based on a unique quantitative relationship between the SERS signal amplification and the coloration degree within a certain range, in which the Sers activity of the substrate can be effectively inferred by judging the degree of color change.
Abstract: Electrochromic technology has been actively researched for displays, adjustable mirrors, smart windows, and other cutting-edge applications. However, it has never been proposed to overcome the critical problems in the field of surface-enhanced Raman scattering (SERS). Herein, we demonstrate a generic electrochromic strategy for ensuring the reproducibility and renewability of SERS substrates, which are both scientifically and technically important due to the great need for quantitative analysis, standardized production and low cost in SERS. This color-changing strategy is based on a unique quantitative relationship between the SERS signal amplification and the coloration degree within a certain range, in which the SERS activity of the substrate can be effectively inferred by judging the degree of color change. Our results may provide a first step toward the rational design of electrochromic SERS substrates with a high sensitivity, reproducibility, and renewability. Electrochromic technology has diverse cutting-edge applications, but it has never been used to overcome the critical problems in the field of surface-enhanced Raman scattering (SERS). Here, the authors demonstrate a generic electrochromic strategy for ensuring the reproducibility and renewability of SERS substrates.

112 citations

Journal ArticleDOI
TL;DR: The RTR-sputtered ICI multilayer is the best substitute for the conventional ITO film electrode in order to realize flexible, transparent, cost-effective and large-area EC devices and TFHs that can be used as flexible and smart windows.
Abstract: We fabricate high-performance, flexible, transparent electrochromic (EC) films and thin film heaters (TFHs) on an ITO/Cu/ITO (ICI) multilayer electrode prepared by continuous roll-to-roll (RTR) sputtering of ITO and Cu targets. The RTR-sputtered ICI multilayer on a 700 mm wide PET substrate at room temperature exhibits a sheet resistance of 11.8 Ω/square and optical transmittance of 73.9%, which are acceptable for the fabrication of flexible and transparent EC films and TFHs. The effect of the Cu interlayer thickness on the electrical and optical properties of the ICI multilayer was investigated in detail. The bending and cycling fatigue tests demonstrate that the RTR-sputtered ICI multilayer was more flexible than a single ITO film because of high strain failure of the Cu interlayer. The flexible and transparent EC films and TFHs fabricated on the ICI electrode show better performances than reference EC films and TFHs with a single ITO electrode. Therefore, the RTR-sputtered ICI multilayer is the best substitute for the conventional ITO film electrode in order to realize flexible, transparent, cost-effective and large-area EC devices and TFHs that can be used as flexible and smart windows.

112 citations

Journal ArticleDOI
TL;DR: In this article, the transmission, absorption, spectral and diffuse reflection of indium-tin-oxide (ITO) thin films were measured in some ranges of UV-Vis-NIR.

112 citations


Network Information
Related Topics (5)
Thin film
275.5K papers, 4.5M citations
89% related
Oxide
213.4K papers, 3.6M citations
89% related
Carbon nanotube
109K papers, 3.6M citations
89% related
Graphene
144.5K papers, 4.9M citations
87% related
Nanoparticle
85.9K papers, 2.6M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023458
2022833
2021538
2020712
2019744
2018770