scispace - formally typeset
Search or ask a question
Topic

Electrochromism

About: Electrochromism is a research topic. Over the lifetime, 13097 publications have been published within this topic receiving 294637 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This work constructed an extended delocalised π-electron layered dark purple EC-COF-1 by reacting the donor N,N,N′, N′-tetrakis(p-aminophenyl)-p-benzenediamine (TPBD) with the acceptor 2,1,3-benZothiadiazole-4,7-dicarboxaldehyde (BTDD).
Abstract: Electrochromic (EC) materials with a dark-to-transmissive switch have great applications in optical communications, infrared wavelength detectors for spacecraft, and infrared camouflage coatings. However, such electroactive materials with high stability and cyclability are rare. Considering the advantages of the donor-acceptor approach (wide-range tuneable band position) and porous two-dimensional (2D) covalent organic framework (COF, well-ordered crystalline framework with stable structure and high surface area), in this work we constructed an extended delocalised π-electron layered dark purple EC-COF-1 by reacting the donor N,N,N′,N′-tetrakis(p-aminophenyl)-p-benzenediamine (TPBD) with the acceptor 2,1,3-benzothiadiazole-4,7-dicarboxaldehyde (BTDD). A sandwiched device made of EC-COF-1 exhibits the two-band bleaching (370 nm and 574 nm) in the visible region and becomes transparent under the applied potential with an induced absorption centring at 1400 nm. This discovery of a stable dark-to-transmissive switch in COF might open another door for their application in many EC devices for various purposes. Electrochromic materials are important for different optical applications but often these materials show low stability. Here, the authors demonstrate a stable donor-acceptor covalent organic framework which shows a stable dark-to-transmissive switching behaviour.

127 citations

Journal ArticleDOI
TL;DR: Various annealing treatments of the VEG precursor, under controlled atmosphere and temperature, led to the successful synthesis of the three pure oxides, with sub-micrometer crystallite size, from a single polyol route through the precipitation of an intermediate precursor.
Abstract: In this study, vanadium sesquioxide (V2O3), dioxide (VO2), and pentoxide (V2O5) were all synthesized from a single polyol route through the precipitation of an intermediate precursor: vanadium ethylene glycolate (VEG). Various annealing treatments of the VEG precursor, under controlled atmosphere and temperature, led to the successful synthesis of the three pure oxides, with sub-micrometer crystallite size. To the best of our knowledge, the synthesis of the three oxides V2O5, VO2, and V2O3 from a single polyol batch has never been reported in the literature. In a second part of the study, the potentialities brought about by the successful preparation of sub-micrometer V2O5, VO2, and V2O3 are illustrated by the characterization of the electrochromic properties of V2O5 films, a discussion about the metal to insulator transition of VO2 on the basis of in situ measurements versus temperature of its electrical and optical properties, and the characterization of the magnetic transition of V2O3 powder from SQUID measurements. For the latter compound, the influence of the crystallite size on the magnetic properties is discussed.

127 citations

Journal ArticleDOI
TL;DR: In this paper, the electrochemical properties of thin films of metal phthalocyanines on conducting substrates are investigated and a film electrode model is proposed based on an irreversible charge transfer step.

127 citations

Journal ArticleDOI
TL;DR: In this article, a prototype smart sunglasses based on cathodic electrochromic (EC) polymers, which show several merits compared with traditional materials for sunglasses lens as well as other smart window materials.
Abstract: Smart sunglasses based on electrochromic polymers are proposed and developed in this study. This article discusses the design, processing, and the optical and electrical performance of a prototype smart sunglasses based on cathodic electrochromic (EC) polymers, which show several merits compared with traditional materials for sunglasses lens as well as other smart window materials. It is a multilayer design of device. The conjugated polymer, poly[3,3-dimethyl-3,4-dihydro2H-thieno [3,4-b] [1,4]dioxepine] (PProDOT-Me2), is utilized as the electrochromic working layer. The counter layer of the device is vanadium oxide (V2O5) film, which serves as an ion storage layer. There is also a polymer gel electrolyte acting as the ionic transport layer, sandwiched between the working and counter layers. The characteristics of the prototype device are reported, including transmittance (%T), driving power, response time, open circuit memory, and lifetime. POLYM. ENG. SCI., 48:2224–2228, 2008. a 2008 Society of Plastics Engineers

127 citations

Journal ArticleDOI
TL;DR: Interestingly, these polymers actually show a bleaching of their neutral absorptions in the near-infrared region and have an electrochromic contrast up to 30% at a switching speed of 3 s and are among the lowest band gap polymers reported.
Abstract: Here we report on the synthesis of two novel very low band gap (VLG) donor–acceptor polymers (Eg ≤ 1 eV) and an oligomer based on the thiadiazoloquinoxaline acceptor. Both polymers demonstrate decent ambipolar mobilities, with P1 showing the best performance of ∼10–2 cm2 V–1 s–1 for p- and n-type operation. These polymers are among the lowest band gap polymers (≲0.7 eV) reported, with a neutral λmax = 1476 nm (P2), which is the farthest red-shifted λmax reported to date for a soluble processable polymer. Very little has been done to characterize the electrochromic aspects of VLG polymers; interestingly, these polymers actually show a bleaching of their neutral absorptions in the near-infrared region and have an electrochromic contrast up to 30% at a switching speed of 3 s.

127 citations


Network Information
Related Topics (5)
Thin film
275.5K papers, 4.5M citations
89% related
Oxide
213.4K papers, 3.6M citations
89% related
Carbon nanotube
109K papers, 3.6M citations
89% related
Graphene
144.5K papers, 4.9M citations
87% related
Nanoparticle
85.9K papers, 2.6M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023458
2022833
2021538
2020712
2019744
2018770