scispace - formally typeset
Search or ask a question
Topic

Electrode potential

About: Electrode potential is a research topic. Over the lifetime, 5823 publications have been published within this topic receiving 150729 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors verified the remarkable sensitivity of Raman spectroscopy for the study of adsorbed pyridine on a silver surface, and extended its applicability to other nitrogen heterocycles and amines.

3,897 citations

Journal ArticleDOI
TL;DR: In this article, the product selectivity between CO and HCOO− has been investigated, which depends upon the combination of modifier atom and substrate electrode, and the order of CO selectivity agrees roughly with the electrode potential of CO2 reduction, and is rationalized in terms of stabilization of intermediate species CO−2 at the electrode surface.

1,564 citations

Journal ArticleDOI
TL;DR: In this paper, the authors derived the stability requirements on electrode potentials of n-type doped conducting polymers and compared the predictions with experimental data on stability of polymers, and showed that an electrode potential of about 0 to + 0.5 V (SCE) is required for stable polymers.

1,349 citations

Journal ArticleDOI
TL;DR: In this article, it is shown that in principle three reference levels can be chosen to measure an absolute value of the electrode potential, and a thermodynamic analysis of the components of the emf of an elec- trochemical cell is shown.
Abstract: The document begins with the illustration of the most widespread misunderstandings in the literature about the physical meaning of absolute electrode potential. The correct expression for this quantity is then de— rived by a thermodynamic analysis of the components of the emf of an elec— trochemical cell. It is shown that in principle three reference levels can be chosen to measure an absolute value of the electrode potential. Only one of these possesses all the requisites for a meaningful comparison on a con— mon energy scale between electrochemical and physical parameters. Such a comparison is the main problem for which the adoption of a correct scale for absolute electrode potentials is a prerequisites. The document ends with the recommendation of a critically evaluated value for the absolute potential of the standard hydrogen electrode in water and in a few other protic solvents. The \"electrode potential\" is often misinterpreted as the electric potential difference between a point in the bulk of the solid conductor and a point in the bulk of the electrolyte solution (L4) (Note a). In reality, the transfer of charged particles across the electrode/electrolyte solution interface is controlled by the difference in the energy levels of the species in the two phases (at constant T and p), which includes not only electrical (electric potential difference) but also chemical (Gibbs energy difference) contributions since the two phases are compositionally dissimilar (refs. 1,2). The value of the tjq of a \"single\" electrode, e.g. one consisting of an electronic conductor in contact with an ionic conductor, is not amenable of direct experimental determination. This is because the two metallic probes from the measuring instruments, both made of the same material, e.g. a metal M1, have to be put in contact with the bulk of these two phases to pick up the signal there. This creates two additional interfaces: a M1/solution interface, and a M1/electrode metal interface. The experimental set-up can be sketched as follows: M1 SIMIMI (1) where M is the metal of the electrode under measure, S is the electrolyte solution, M1 is the metal of the \"connections\" to the measuring instrument and the prime on M indicates that this terminal differs from the other one (M1) by the electrical state only. It is expedient to replace the M1/S interface with a more specific, reproducible and stable system known as the reference electrode. It ensues that an electrode potential can only be measured against a reference system. The measured quantity is thus a relative electrode potential. For the specific example of cell (1), the measured quantity E, the electrode potential of M relative to M1 (Note b), is conventionally split into two contributions, each pertaining to one of the electrodes: EEM_EM1 (2) EM and EM1 can be expressed in their own on a potential scale referred to another reference electrode. In this respect, the hydrogen electrode is conventionally taken as the universal Note a: This quantity, known as the Galvani potential difference between M and 5, has been defined in ref. 3. Note b: In accord with the IUPAC convention on the sign of electrode potentials, all electrode potentials in this document are to be intended as \"reduction potentials\", i.e. the electrode reaction is written in the direction of the reduction (refs. 3,4). 956 Absolute electrode potential (Recommendations 1986) 957 (for solutions in protic solvents) reference electrode for which, under standard conditions, E°(H/H2) = 0 at every temperature (Note c). Since EM as measured is a relative value, it appeals to many to know what the absolute value may be: viz. , the value of EM measured with respect to a universal reference system not including any additional metal/solution interface. Actually, for the vast majority of practical electrochenilcal problems, there is no need to bring in absolute potentials . The one outstanding example where this concept is useful is the matching of semiconductor energy levels and solution energy levels . However, from a fundamental point of view, this problem comes necessarily about in every case one wants to connect the \"relative\" electrode potential to the \"absolute\" physical quantities of the given system. On a customary basis, since the electrode potential is envisaged as the electric potential drop between M and S, the cell potential difference for system (1) is usually written as the electric potential difference between the two metallic terminals: EMi M1 (3) Since three interfaces are involved in cell (1), eqn.(3) can be rewritten as: E (M{ M) + (M S) + (S Mi) (4) Comparison of eqn. (4) with eqn. (2) shows that the identification of the absolute electrode potential with (M S) is not to be reconmended because it is conceptually misleading. Since M' and M are in electronic equilibrium, then (ref. 3): (4M ) = ('/F pr/F) (5) where the right hand side of eqn. (5) expresses the difference in chemical potential of electrons in the two electrode metals. Substitution of eqn.(5) into eqn.(4) gives: E = (p ii'/F) (E'q p'/F) (6) The two exoressions in brackets do not contain quantities pertaining to the other interfaces. They can thus be defined as single electrode potentials (Note d). Since eqn. (6) has been obtained with the two electrodes assembled into a cell, it is possible that terms common to both electrodes do not appear explicitly in eqn. (6) because they cancel out ultimately. The relationship between the truly absolute electrode potential and the single electrode potential in eqn.(6) can thus be written in the form (Note e) (ref. 5): EM(abs) = EM(r) + K (7) where K is a constant depending on the \"absolute\" reference system, and

1,205 citations

Journal ArticleDOI
TL;DR: In this article, the NBS Tables of Chemical Thermodynamic Properties (NBS tables of chemical properties) were used to estimate the electrode potentials of the elements in the solvent of interest.
Abstract: A great deal of solution chemistry can be summarized in a table of standard electrode potentials of the elements in the solvent of interest. In this work, standard electrode potentials and temperature coefficients in water at 298.15 K, based primarily on the ‘‘NBS Tables of Chemical Thermodynamic Properties,’’ are given for nearly 1700 half‐reactions at pH=0.000 and pH=13.996. The data allow the calculation of the thermodynamic changes and equilibrium constants associated with ∼1.4 million complete cell reactions over the normal temperature range of liquid water. Estimated values are clearly distinguished from experimental values, and half‐reactions involving doubtful chemical species are duly noted. General and specific methods of estimation of thermodynamic quantities are summarized.

1,027 citations


Network Information
Related Topics (5)
Oxide
213.4K papers, 3.6M citations
85% related
Electrode
226K papers, 2.3M citations
84% related
Aqueous solution
189.5K papers, 3.4M citations
83% related
Adsorption
226.4K papers, 5.9M citations
82% related
Carbon nanotube
109K papers, 3.6M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202311
202230
202191
2020101
2019101
2018112