Topic
Electroencephalography
About: Electroencephalography is a research topic. Over the lifetime, 21685 publications have been published within this topic receiving 644147 citations. The topic is also known as: EEG & Electroencephalogram.
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: It is concluded that correlation of low frequency fluctuations, which may arise from fluctuations in blood oxygenation or flow, is a manifestation of functional connectivity of the brain.
Abstract: An MRI time course of 512 echo-planar images (EPI) in resting human brain obtained every 250 ms reveals fluctuations in signal intensity in each pixel that have a physiologic origin. Regions of the sensorimotor cortex that were activated secondary to hand movement were identified using functional MRI methodology (FMRI). Time courses of low frequency (< 0.1 Hz) fluctuations in resting brain were observed to have a high degree of temporal correlation (P < 10(-3)) within these regions and also with time courses in several other regions that can be associated with motor function. It is concluded that correlation of low frequency fluctuations, which may arise from fluctuations in blood oxygenation or flow, is a manifestation of functional connectivity of the brain.
8,766 citations
Book•
[...]
01 Apr 1993
TL;DR: The main thrust of Electroencephalography is to preserve the sound basis of classic EEG recording and reading and, on the other hand, to present the newest developments for future EEG/neurophysiology research, especially in view of the highest brain functions as mentioned in this paper.
Abstract: The main thrust of Electroencephalography is to preserve the sound basis of classic EEG recording and reading and, on the other hand, to present the newest developments for future EEG/neurophysiology research, especially in view of the highest brain functions. The Fourth Edition features new chapters on modern and future oriented EEG/EP research, spinal monitoring and dipole modelling
3,194 citations
[...]
TL;DR: A direct comparison of the tomography results with those obtained from fitting one and two dipoles illustrates that the new method provides physiologically meaningful results while dipolar solutions fail in many situations.
Abstract: This paper presents a new method for localizing the electric activity in the brain based on multichannel surface EEG recordings. In contrast to the models presented up to now the new method does not assume a limited number of dipolar point sources nor a distribution on a given known surface, but directly computes a current distribution throughout the full brain volume. In order to find a unique solution for the 3-dimensional distribution among the infinite set of different possible solutions, the method assumes that neighboring neurons are simultaneously and synchronously activated. The basic assumption rests on evidence from single cell recordings in the brain that demonstrates strong synchronization of adjacent neurons. In view of this physiological consideration the computational task is to select the smoothest of all possible 3-dimensional current distributions, a task that is a common procedure in generalized signal processing. The result is a true 3-dimensional tomography with the characteristic that localization is preserved with a certain amount of dispersion, i.e., it has a relatively low spatial resolution. The new method, which we call Low Resolution Electromagnetic Tomography (LORETA) is illustrated with two different sets of evoked potential data, the first showing the tomography of the P100 component to checkerboard stimulation of the left, right, upper and lower hemiretina, and the second showing the results for the auditory N100 component and the two cognitive components CNV and P300. A direct comparison of the tomography results with those obtained from fitting one and two dipoles illustrates that the new method provides physiologically meaningful results while dipolar solutions fail in many situations. In the case of the cognitive components, the method offers new hypotheses on the location of higher cognitive functions in the brain.
2,729 citations
[...]
TL;DR: The results on EEG data collected from normal and autistic subjects show that ICA can effectively detect, separate, and remove contamination from a wide variety of artifactual sources in EEG records with results comparing favorably with those obtained using regression and PCA methods.
Abstract: Eye movements, eye blinks, cardiac signals, muscle noise, and line noise present serious problems for electroencephalographic (EEG) interpretation and analysis when rejecting contaminated EEG segments results in an unacceptable data loss. Many methods have been proposed to remove artifacts from EEG recordings, especially those arising from eye movements and blinks. Often regression in the time or frequency domain is performed on parallel EEG and electrooculographic (EOG) recordings to derive parameters characterizing the appearance and spread of EOG artifacts in the EEG channels. Because EEG and ocular activity mix bidirectionally, regressing out eye artifacts inevitably involves subtracting relevant EEG signals from each record as well. Regression methods become even more problematic when a good regressing channel is not available for each artifact source, as in the case of muscle artifacts. Use of principal component analysis (PCA) has been proposed to remove eye artifacts from multichannel EEG. However, PCA cannot completely separate eye artifacts from brain signals, especially when they have comparable amplitudes. Here, we propose a new and generally applicable method for removing a wide variety of artifacts from EEG records based on blind source separation by independent component analysis (ICA). Our results on EEG data collected from normal and autistic subjects show that ICA can effectively detect, separate, and remove contamination from a wide variety of artifactual sources in EEG records with results comparing favorably with those obtained using regression and PCA methods. ICA can also be used to analyze blink-related brain activity.
2,681 citations
[...]
TL;DR: Dynamical properties of brain electrical activity from different recording regions and from different physiological and pathological brain states are compared and strongest indications of nonlinear deterministic dynamics were found for seizure activity.
Abstract: We compare dynamical properties of brain electrical activity from different recording regions and from different physiological and pathological brain states Using the nonlinear prediction error and an estimate of an effective correlation dimension in combination with the method of iterative amplitude adjusted surrogate data, we analyze sets of electroencephalographic (EEG) time series: surface EEG recordings from healthy volunteers with eyes closed and eyes open, and intracranial EEG recordings from epilepsy patients during the seizure free interval from within and from outside the seizure generating area as well as intracranial EEG recordings of epileptic seizures As a preanalysis step an inclusion criterion of weak stationarity was applied Surface EEG recordings with eyes open were compatible with the surrogates' null hypothesis of a Gaussian linear stochastic process Strongest indications of nonlinear deterministic dynamics were found for seizure activity Results of the other sets were found to be inbetween these two extremes
2,387 citations