scispace - formally typeset
Search or ask a question
Topic

Electrolyte

About: Electrolyte is a research topic. Over the lifetime, 124601 publications have been published within this topic receiving 2337639 citations. The topic is also known as: electrolyte solution & electrolytes.


Papers
More filters
Book
04 May 2018

1,677 citations

Journal ArticleDOI
16 Apr 2015-Nature
TL;DR: A rechargeable aluminium battery with high-rate capability that uses an aluminium metal anode and a three-dimensional graphitic-foam cathode, found to enable fast anion diffusion and intercalation, and to withstand more than 7,500 cycles without capacity decay.
Abstract: An aluminium-ion battery is reported that can charge within one minute, and offers improved cycle life compared to previous devices; it operates through the electrochemical deposition and dissolution of aluminium at the anode, and the intercalation/de-intercalation of chloroaluminate anions into a novel graphitic-foam cathode. The low cost and useful electrical properties of aluminium suggest that rechargeable Al-ion batteries could offer viable and safe battery technology, but problems with cathode materials, poor cycling performance and other complications have persisted. Here Hongjie Dai and colleagues describe an Al-ion battery that can charge within one minute and offers substantially improved cycle life with little decay in capacity compared to previous devices reported in the literature. The battery operates through the electrochemical deposition and dissolution of Al and intercalation/de-intercalation of chloroaluminate anions into a novel 3D graphitic foam cathode using a non-flammable ionic liquid electrolyte. The development of new rechargeable battery systems could fuel various energy applications, from personal electronics to grid storage1,2. Rechargeable aluminium-based batteries offer the possibilities of low cost and low flammability, together with three-electron-redox properties leading to high capacity3. However, research efforts over the past 30 years have encountered numerous problems, such as cathode material disintegration4, low cell discharge voltage (about 0.55 volts; ref. 5), capacitive behaviour without discharge voltage plateaus (1.1–0.2 volts6 or 1.8–0.8 volts7) and insufficient cycle life (less than 100 cycles) with rapid capacity decay (by 26–85 per cent over 100 cycles)4,5,6,7. Here we present a rechargeable aluminium battery with high-rate capability that uses an aluminium metal anode and a three-dimensional graphitic-foam cathode. The battery operates through the electrochemical deposition and dissolution of aluminium at the anode, and intercalation/de-intercalation of chloroaluminate anions in the graphite, using a non-flammable ionic liquid electrolyte. The cell exhibits well-defined discharge voltage plateaus near 2 volts, a specific capacity of about 70 mA h g–1 and a Coulombic efficiency of approximately 98 per cent. The cathode was found to enable fast anion diffusion and intercalation, affording charging times of around one minute with a current density of ~4,000 mA g–1 (equivalent to ~3,000 W kg–1), and to withstand more than 7,500 cycles without capacity decay.

1,671 citations

Journal ArticleDOI
TL;DR: In this article, a review of electrolyte additives used in Li-ion batteries is presented, which can be classified into five categories: solid electrolyte interface (SEI) forming improver, cathode protection agent, LiPF 6 salt stabilizer, safety protection agent and Li deposition improver.

1,622 citations

Journal ArticleDOI
TL;DR: In this article, the crystalline structure and the electrochemical properties of the hydrous ruthenium oxide powder have been studied as a function of the annealing temperature.
Abstract: The hydrous ruthenium oxide has been formed by a sol-gel process. The precursor was obtained by mixing aqueous solutions of RuCl{sub 3}{center_dot}xH{sub 2}O and alkalis. The hydrous ruthenium oxide powder was obtained by annealing the precursor at low temperatures. The crystalline structure and the electrochemical properties of the powder have been studied as a function of the annealing temperature. At lower annealing temperatures the powder is in an amorphous phase with a high specific capacitance. Specific capacitance as high as 720 F/g was measured for the powder formed at 150 C. when the annealing temperature exceeded 175 C, the crystalline phase was formed, and the specific capacitance dropped rapidly. The surface area of the powder and the resistivity of the pellet made from these powders have also been studied. The specific surface area and the resistivity decreased as the annealing temperature increased. A capacitor was made with electrodes comprised of hydrous ruthenium oxide and H{sub 2}SO{sub 4} electrolyte. The energy density of 96 J/g (or 26.7 Wh/kg), based on electrode material only, was measured for the cell using hydrous ruthenium oxide electrodes. It was also found that hydrous ruthenium oxide is stable in H{sub 2}SO{sub 4} electrolyte.

1,535 citations

Journal ArticleDOI
TL;DR: In this paper, it was found that the shape of graphite particles plays a key role in their application as active mass in anodes for Li-ion batteries and that the surface films formed on lithiated graphite are similar to those formed on Li metal in the same solutions.

1,519 citations


Network Information
Related Topics (5)
Oxide
213.4K papers, 3.6M citations
86% related
Aqueous solution
189.5K papers, 3.4M citations
85% related
Nanoparticle
85.9K papers, 2.6M citations
84% related
Carbon nanotube
109K papers, 3.6M citations
84% related
Adsorption
226.4K papers, 5.9M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20238,643
202216,675
20215,525
20207,103
20197,342