scispace - formally typeset
Search or ask a question
Topic

Electromagnetically induced transparency

About: Electromagnetically induced transparency is a research topic. Over the lifetime, 5201 publications have been published within this topic receiving 142180 citations. The topic is also known as: EIT.


Papers
More filters
Journal ArticleDOI
TL;DR: This work identifies form-stable coupled excitations of light and matter ("dark-state polaritons") associated with the propagation of quantum fields in electromagnetically induced transparency that can be controlled by an external coherent field as the pulse propagates.
Abstract: We identify form-stable coupled excitations of light and matter ("dark-state polaritons") associated with the propagation of quantum fields in electromagnetically induced transparency. The properties of dark-state polaritons such as the group velocity are determined by the mixing angle between light and matter components and can be controlled by an external coherent field as the pulse propagates. In particular, light pulses can be decelerated and "trapped" in which case their shape and quantum state are mapped onto metastable collective states of matter. Possible applications of this reversible coherent-control technique are discussed.

1,314 citations

Journal ArticleDOI
TL;DR: In this paper, a strong coupling field between a metastable state and the upper state of an allowed transition to ground was proposed to obtain a resonantly enhanced third-order susceptibility while at the same time inducing transparency of the media.
Abstract: We show that by applying a strong-coupling field between a metastable state and the upper state of an allowed transition to ground one may obtain a resonantly enhanced third-order susceptibility while at the same time inducing transparency of the media. An improvement in conversion efficiency and parametric gain, as compared to weak-coupling field behavior, of many orders of magnitude is predicted.

1,287 citations

Journal ArticleDOI
TL;DR: In this article, a broad range of resonant electromagnetic effects by using two effective coupled oscillators, including the Fano resonance, electromagnetically induced transparency, Kerker and Borrmann effects, and parity-time symmetry breaking, are reviewed.
Abstract: The importance of the Fano resonance concept is recognized across multiple fields of physics. In this Review, Fano resonance is explored in the context of optics, with particular emphasis on dielectric nanostructures and metasurfaces. Rapid progress in photonics and nanotechnology brings many examples of resonant optical phenomena associated with the physics of Fano resonances, with applications in optical switching and sensing. For successful design of photonic devices, it is important to gain deep insight into different resonant phenomena and understand their connection. Here, we review a broad range of resonant electromagnetic effects by using two effective coupled oscillators, including the Fano resonance, electromagnetically induced transparency, Kerker and Borrmann effects, and parity–time symmetry breaking. We discuss how to introduce the Fano parameter for describing a transition between two seemingly different spectroscopic signatures associated with asymmetric Fano and symmetric Lorentzian shapes. We also review the recent results on Fano resonances in dielectric nanostructures and metasurfaces.

1,234 citations

Proceedings Article
12 May 1991
TL;DR: It is shown that by applying a strong-coupling field between a metastable state and the upper state of an allowed transition to ground one may obtain a resonantly enhanced third-order susceptibility while at the same time inducing transparency of the media.
Abstract: It is well known by those practicing the techniques of nonlinear optics that the power that may be generated in a frequency summing process and the gain that may be obtained in a parametric process are determined by the interaction of tire nonlinear and linear susceptibilities. In general as an atomic transition to the ground state is approached, the nonlinear susceptibility is resonantly enhanced, but at the same time the media exhibits a rapidly increasing refractive index and becomes opaque.

1,212 citations

Journal ArticleDOI
07 Apr 2011-Nature
TL;DR: Measurements at room temperature in the analogous regime of electromagnetically induced absorption show the utility of these chip-scale optomechanical systems for optical buffering, amplification, and filtering of microwave-over-optical signals.
Abstract: Controlling the interaction between localized optical and mechanical excitations has recently become possible following advances in micro- and nanofabrication techniques. So far, most experimental studies of optomechanics have focused on measurement and control of the mechanical subsystem through its interaction with optics, and have led to the experimental demonstration of dynamical back-action cooling and optical rigidity of the mechanical system. Conversely, the optical response of these systems is also modified in the presence of mechanical interactions, leading to effects such as electromagnetically induced transparency (EIT) and parametric normal-mode splitting. In atomic systems, studies of slow and stopped light (applicable to modern optical networks and future quantum networks) have thrust EIT to the forefront of experimental study during the past two decades. Here we demonstrate EIT and tunable optical delays in a nanoscale optomechanical crystal, using the optomechanical nonlinearity to control the velocity of light by way of engineered photon-phonon interactions. Our device is fabricated by simply etching holes into a thin film of silicon. At low temperature (8.7 kelvin), we report an optically tunable delay of 50 nanoseconds with near-unity optical transparency, and superluminal light with a 1.4 microsecond signal advance. These results, while indicating significant progress towards an integrated quantum optomechanical memory, are also relevant to classical signal processing applications. Measurements at room temperature in the analogous regime of electromagnetically induced absorption show the utility of these chip-scale optomechanical systems for optical buffering, amplification, and filtering of microwave-over-optical signals.

1,208 citations


Network Information
Related Topics (5)
Quantum entanglement
39.5K papers, 1M citations
89% related
Quantum
60K papers, 1.2M citations
87% related
Quantum dot
76.7K papers, 1.9M citations
86% related
Laser
353.1K papers, 4.3M citations
86% related
Optical fiber
167K papers, 1.8M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023159
2022344
2021262
2020268
2019279
2018288