scispace - formally typeset
Search or ask a question
Topic

Electromechanical coupling coefficient

About: Electromechanical coupling coefficient is a research topic. Over the lifetime, 2831 publications have been published within this topic receiving 45353 citations.


Papers
More filters
Book
04 Apr 2011
TL;DR: In this article, the authors present a mathematical model of a piezoelectric energy harvesting system with a two-segment cantilever and a single-mode Euler-Bernoulli model.
Abstract: About the Authors. Preface. 1. Introduction to Piezoelectric Energy Harvesting. 1.1 Vibration-Based Energy Harvesting Using Piezoelectric Transduction. 1.2 An Examples of a Piezoelectric Energy Harvesting System. 1.3 Mathematical Modeling of Piezoelectric Energy Harvesters. 1.4 Summary of the Theory of Linear Piezoelectricity. 1.5 Outline of the Book. 2. Base Excitation Problem for Cantilevered Structures and Correction of the Lumped-Parameter Electromechanical Model. 2.1 Base Excitation Problem for the Transverse Vibrations. 2.2 Correction of the Lumped-Parameter Base Excitation Model for Transverse Vibrations. 2.3 Experimental Case Studies for Validation of the Correction Factor. 2.4 Base Excitation Problem for Longitudinal Vibrations and Correction of its Lumped-Parameter Model. 2.5 Correction Factor in the Electromechanically Coupled Lumped-Parameter Equations and a Theoretical Case Study. 2.6 Summary. 2.7 Chapter Notes. 3. Analytical Distributed-Parameter Electromechanical Modeling of Cantilevered Piezoelectric Energy Harvesters. 3.1 Fundamentals of the Electromechanically Coupled Distributed-Parameter Model. 3.2 Series Connection of the Piezoceramic Layers. 3.3 Parallel Connection of Piezoceramic Layers. 3.4 Equivalent Representation of the Series and the Parallel Connection Cases. 3.5 Single-Mode Electromechanical Equations for Modal Excitations. 3.6 Multi-mode and Single-Mode Electromechanical FRFs. 3.7 Theoretical Case Study. 3.8 Summary. 3.9 Chapter Notes. 4. Experimental Validation of the Analytical Solution for Bimorph Configurations. 4.1 PZT-5H Bimorph Cantilever without a Tip Mass. 4.2 PZT-5H Bimorph Cantilever with a Tip Mass. 4.3 PZT-5A Bimorph Cantilever. 4.4 Summary. 4.5 Chapter Notes. 5. Dimensionless Equations, Asymptotic Analyses, and Closed-Form Relations for Parameter Identification and Optimization. 5.1 Dimensionless Representation of the Single-Mode Electromechanical FRFs. 5.2 Asymptotic Analyses and Resonance Frequencies. 5.3 Identification of Mechanical Damping. 5.4 Identification of the Optimum Electrical Load for Resonance Excitation. 5.5 Intersection of the Voltage Asymptotes and a Simple Technique for the Experimental Identification of the Optimum Load Resistance. 5.6 Vibration Attenuation Amplification from the Short-Circuit to Open-Circuit Conditions. 5.7 Experimental Validation for a PZT-5H Bimorph Cantilever. 5.8 Summary. 5.9 Chapter Notes. 6. Approximate Analytical Distributed-Parameter Electromechanical Modeling of Cantilevered Piezoelectric Energy Harvesters. 6.1 Unimorph Piezoelectric Energy Harvester Configuration. 6.2 Electromechanical Euler-Bernoulli Model with Axial Deformations. 6.3 Electromechanical Rayleigh Model with Axial Deformations. 6.4 Electromechanical Timoshenko Model with Axial Deformations. 6.5 Modeling of Symmetric Configurations. 6.6 Presence of a Tip Mass in the Euler-Bernoulli, Rayleigh, and Timoshenko Models. 6.7 Comments on the Kinematically Admissible Trial Functions. 6.8 Experimental Validation of the Assumed-Modes Solution for a Bimorph Cantilever. 6.9 Experimental Validation for a Two-Segment Cantilever. 6.10 Summary. 6.11 Chapter Notes. 7. Modeling of Piezoelectric Energy Harvesting for Various Forms of Dynamic Loading. 7.1 Governing Electromechanical Equations. 7.2 Periodic Excitation. 7.3 White Noise Excitation. 7.4 Excitation Due to Moving Loads. 7.5 Local Strain Fluctuations on Large Structures. 7.6 Numerical Solution for General Transient Excitation. 7.7 Case Studies. 7.8 Summary. 7.9 Chapter Notes. 8. Modeling and Exploiting Mechanical Nonlinearities in Piezoelectric Energy Harvesting. 8.1 Perturbation Solution of the Piezoelectric Energy Harvesting Problem: the Method of Multiple Scales. 8.2 Monostable Duffing Oscillator with Piezoelectric Coupling. 8.3 Bistable Duffing Oscillator with Piezoelectric Coupling: the Piezomagnetoelastic Energy Harvester. 8.4 Experimental Performance Results of the Bistable Peizomagnetoelastic Energy Harvester. 8.5 A Bistable Plate for Piezoelectric Energy Harvesting. 8.6 Summary. 8.7 Chapter Notes. 9. Piezoelectric Energy Harvesting from Aeroelastic Vibrations. 9.1 A Lumped-Parameter Piezoaeroelastic Energy Harvester Model for Harmonic Response. 9.2 Experimental Validations of the Lumped-Parameter Model at the Flutter Boundary. 9.3 Utilization of System Nonlinearities in Piezoaeroelastic Energy Harvesting. 9.4 A Distributed-Parameter Piezoaeroelastic Model for Harmonic Response: Assumed-Modes Formulation. 9.5 Time-Domain and Frequency-Domain Piezoaeroelastic Formulations with Finite-Element Modeling. 9.6 Theoretical Case Study for Airflow Excitation of a Cantilevered Plate. 9.7 Summary. 9.8 Chapter Notes. 10. Effects of Material Constants and Mechanical Damping on Power Generation. 10.1 Effective Parameters of Various Soft Ceramics and Single Crystals. 10.2 Theoretical Case Study for Performance Comparison of Soft Ceramics and Single Crystals. 10.3 Effective Parameters of Typical Soft and Hard Ceramics and Single Crystals. 10.4 Theoretical Case Study for Performance Comparison of Soft and Hard Ceramics and Single Crystals. 10.5 Experimental Demonstration for PZT-5A and PZT-5H Cantilevers. 10.6 Summary. 10.7 Chapter Notes. 11. A Brief Review of the Literature of Piezoelectric Energy Harvesting Circuits. 11.1 AC-DC Rectification and Analysis of the Rectified Output. 11.2 Two-Stage Energy Harvesting Circuits: DC-DC Conversion for Impedance Matching. 11.3 Synchronized Switching on Inductor for Piezoelectric Energy Harvesting. 11.4 Summary. 11.5 Chapter Notes. Appendix A. Piezoelectric Constitutive Equations. Appendix B. Modeling of the Excitation Force in Support Motion Problems of Beams and Bars. Appendix C. Modal Analysis of a Uniform Cantilever with a Tip Mass. Appendix D. Strain Nodes of a Uniform Thin Beam for Cantilevered and Other Boundary Conditions. Appendix E. Numerical Data for PZT-5A and PZT-5H Piezoceramics. Appendix F. Constitutive Equations for an Isotropic Substructure. Appendix G. Essential Boundary Conditions for Cantilevered Beams. Appendix H. Electromechanical Lagrange Equations Based on the Extended Hamilton s Principle. Index.

1,471 citations

Book
01 Jan 1942

809 citations

Journal ArticleDOI
W.A. Smith1, B.A. Auld
TL;DR: A simple physical model of 1-3 composite piezoelectrics is advanced for the material properties that are relevant to thickness-mode oscillations, revealing that the composite's material properties cannot be optimized simultaneously; tradeoffs must be made.
Abstract: A simple physical model of 1-3 composite piezoelectrics is advanced for the material properties that are relevant to thickness-mode oscillations. This model is valid when the lateral spatial scale of the composite is sufficiently fine that the composite can be treated as an effective homogeneous medium. Expressions for the composite's material parameters in terms of the volume fraction of piezoelectric ceramic and the properties of the constituent piezoelectric ceramic and passive polymer are derived. A number of examples illustrate the implications of using piezocomposites in medical ultrasonic imaging transducers. While most material properties of the composite roughly interpolate between their values for pure polymer and pure ceramic, the composite's thickness-mode electromechanical coupling can exceed that of the component ceramic. This enhanced electromechanical coupling stems from partially freeing the lateral clamping of the ceramic in the composite structure. Their higher coupling and lower acoustic impedance recommend composites for medical ultrasonic imaging transducers. The model also reveals that the composite's material properties cannot be optimized simultaneously; tradeoffs must be made. Of most significance is the tradeoff between the desired lower acoustic impedance and the undesired smaller electromechanical coupling that occurs as the volume fraction of piezoceramic is reduced. >

773 citations

Journal ArticleDOI
TL;DR: In this article, a comparison between four vibration-powered generators designed to power standalone transducers is presented, based on a particular processing of the voltage delivered by the piezoelectric material, which enhances the electromechanical conversion.
Abstract: This paper presents a comparison between four vibration-powered generators designed to power standalone systems, such as wireless transducers. Ambient vibrations are converted into electrical energy using piezoelectric materials. The originality of the proposed approaches is based on a particular processing of the voltage delivered by the piezoelectric material, which enhances the electromechanical conversion. The principle of each processing circuit is detailed. Experimental results confirm the predictions given by an electromechanical model: compared to usual generators, the proposed approaches dramatically increase the power of the generators.

644 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss properties relevant to sensor applications, including piezoelectric materials that are commercially available and those that are under development, including oxyborate [ReCa4O (BO3)3] single crystals.
Abstract: Piezoelectric materials that can function at high temperatures without failure are desired for structural health monitoring and/or nondestructive evaluation of the next generation turbines, more efficient jet engines, steam, and nuclear/electrical power plants. The operational temperature range of smart transducers is limited by the sensing capability of the piezoelectric material at elevated temperatures, increased conductivity and mechanical attenuation, variation of the piezoelectric properties with temperature. This article discusses properties relevant to sensor applications, including piezoelectric materials that are commercially available and those that are under development. Compared to ferroelectric polycrystalline materials, piezoelectric single crystals avoid domain-related aging behavior, while possessing high electrical resistivities and low losses, with excellent thermal property stability. Of particular interest is oxyborate [ReCa4O (BO3)3] single crystals for ultrahigh temperature applications (>1000°C). These crystals offer piezoelectric coefficients deff, and electromechanical coupling factors keff, on the order of 3–16 pC/N and 6%–31%, respectively, significantly higher than those values of α-quartz piezocrystals (~2 pC/N and 8%). Furthermore, the absence of phase transitions prior to their melting points ~1500°C, together with ultrahigh electrical resistivities (>106 Ω·cm at 1000°C) and thermal stability of piezoelectric properties (< 20% variations in the range of room temperature ~1000°C), allow potential operation at extreme temperature and harsh environments.

634 citations


Network Information
Related Topics (5)
Dielectric
169.7K papers, 2.7M citations
79% related
Thin film
275.5K papers, 4.5M citations
77% related
Microstructure
148.6K papers, 2.2M citations
75% related
Silicon
196K papers, 3M citations
75% related
Band gap
86.8K papers, 2.2M citations
74% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202345
202297
202193
2020115
201994
201858