scispace - formally typeset
Search or ask a question
Topic

Electron

About: Electron is a research topic. Over the lifetime, 111104 publications have been published within this topic receiving 2150011 citations.


Papers
More filters
Journal ArticleDOI
William Shockley1, W. T. Read1
TL;DR: In this article, the statistics of the recombination of holes and electrons in semiconductors were analyzed on the basis of a model in which the recombinations occurred through the mechanism of trapping.
Abstract: The statistics of the recombination of holes and electrons in semiconductors is analyzed on the basis of a model in which the recombination occurs through the mechanism of trapping. A trap is assumed to have an energy level in the energy gap so that its charge may have either of two values differing by one electronic charge. The dependence of lifetime of injected carriers upon initial conductivity and upon injected carrier density is discussed.

5,442 citations

01 Jan 1960
TL;DR: In this paper, the angular momentum, one of the most fundamental quantities in all of quantum mechanics, is introduced and a concise introduction to its application in atomic, molecular, and nuclear physics is provided.
Abstract: This book offers a concise introduction to the angular momentum, one of the most fundamental quantities in all of quantum mechanics. Beginning with the quantization of angular momentum, spin angular momentum, and the orbital angular momentum, the author goes on to discuss the Clebsch-Gordan coefficients for a two-component system. After developing the necessary mathematics, specifically spherical tensors and tensor operators, the author then investigates the 3-j, 6-j, and 9-j symbols. Throughout, the author provides practical applications to atomic, molecular, and nuclear physics. These include partial-wave expansions, the emission and absorption of particles, the proton and electron quadrupole moment, matrix element calculation in practice, and the properties of the symmetrical top molecule.

5,050 citations

Journal ArticleDOI
TL;DR: In this paper, the excited electronic states of semiconductor crystallites sufficiently small (∼50 A diam) that the electronic properties differ from those of bulk materials were modeled, and an approximate formula was given for the lowest excited electronic state energy.
Abstract: We model, in an elementary way, the excited electronic states of semiconductor crystallites sufficiently small (∼50 A diam) that the electronic properties differ from those of bulk materials. In this limit the excited states and ionization processes assume a molecular‐like character. However, diffraction of bonding electrons by the periodic lattice potential remains of paramount importance in the crystallite electronic structure. Schrodinger’s equation is solved at the same level of approximation as used in the analysis of bulk crystalline electron‐hole states (Wannier excitons). Kinetic energy is treated by the effective mass approximation, and the potential energy is due to high frequency dielectric solvation by atomic core electrons. An approximate formula is given for the lowest excited electronic state energy. This expression is dependent upon bulk electronic properties, and contains no adjustable parameters. The optical f number for absorption and emission is also considered. The same model is applied to the problem of two conduction band electrons in a small crystallite, in order to understand how the redox potential of excess electrons depends upon crystallite size.

4,322 citations

Journal ArticleDOI
Philip W. Anderson1
TL;DR: In this article, the conditions necessary in metals for the presence or absence of localized moments on solute ions containing inner shell electrons are analyzed, and a self-consistent Hartree-Fock treatment is applied to show that there is a sharp transition between the magnetic state and the nonmagnetic state, depending on the density of states of free electrons, the $s\ensuremath{-}d$ admixture matrix elements, and the Coulomb correlation integral in the $d$ shell.
Abstract: The conditions necessary in metals for the presence or absence of localized moments on solute ions containing inner shell electrons are analyzed. A self-consistent Hartree-Fock treatment shows that there is a sharp transition between the magnetic state and the nonmagnetic state, depending on the density of states of free electrons, the $s\ensuremath{-}d$ admixture matrix elements, and the Coulomb correlation integral in the $d$ shell; that in the magnetic state the $d$ polarization can be reduced rather severely to nonintegral values, without appreciable free electron polarization because of a compensation effect; and that in the nonmagnetic state the virtual localized $d$ level tends to lie near the Fermi surface. It is emphasized that the condition for the magnetic state depends on the Coulomb (i.e., exchange self-energy) integral, and that the usual type of exchange alone is not large enough in $d$-shell ions to allow magnetic moments to be present. We show that the susceptibility and specific heat due to the inner shell electrons show strongly contrasting behavior even in the nonmagnetic state. A calculation including degenerate $d$ orbitals and $d\ensuremath{-}d$ exchange shows that the orbital angular momentum can be quenched, even when localized spin moments exist, and even on an isolated magnetic atom, by kinetic energy effects.

4,039 citations

Journal ArticleDOI
TL;DR: In this paper, a set of self-consistent equations for the one-electron Green's function have been derived, which correspond to an expansion in a screened potential rather than the bare Coulomb potential.
Abstract: A set of successively more accurate self-consistent equations for the one-electron Green's function have been derived. They correspond to an expansion in a screened potential rather than the bare Coulomb potential. The first equation is adequate for many purposes. Each equation follows from the demand that a corresponding expression for the total energy be stationary with respect to variations in the Green's function. The main information to be obtained, besides the total energy, is one-particle-like excitation spectra, i.e., spectra characterized by the quantum numbers of a single particle. This includes the low-excitation spectra in metals as well as configurations in atoms, molecules, and solids with one electron outside or one electron missing from a closed-shell structure. In the latter cases we obtain an approximate description by a modified Hartree-Fock equation involving a "Coulomb hole" and a static screened potential in the exchange term. As an example, spectra of some atoms are discussed. To investigate the convergence of successive approximations for the Green's function, extensive calculations have been made for the electron gas at a range of metallic densities. The results are expressed in terms of quasiparticle energies E(k) and quasiparticle interactions f(k, k′). The very first approximation gives a good value for the magnitude of E(k). To estimate the derivative of E(k) we need both the first- and the second-order terms. The derivative, and thus the specific heat, is found to differ from the free-particle value by only a few percent. Our correction to the specific heat keeps the same sign down to the lowest alkali-metal densities, and is smaller than those obtained recently by Silverstein and by Rice. Our results for the paramagnetic susceptibility are unreliable in the alkali-metal-density region owing to poor convergence of the expansion for f. Besides the proof of a modified Luttinger-Ward-Klein variational principle and a related self-consistency idea, there is not much new in principle in this paper. The emphasis is on the development of a numerically manageable approximation scheme. (Less)

4,030 citations


Network Information
Related Topics (5)
Ion
107.5K papers, 2M citations
92% related
Excited state
102.2K papers, 2.2M citations
92% related
Magnetic field
167.5K papers, 2.3M citations
92% related
Scattering
152.3K papers, 3M citations
89% related
Magnetization
107.8K papers, 1.9M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20233,867
20228,136
20212,379
20202,712
20192,815