scispace - formally typeset
Search or ask a question
Topic

Electron

About: Electron is a research topic. Over the lifetime, 111104 publications have been published within this topic receiving 2150011 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the basic physics of laser pulse evolution in underdense plasmas is also reviewed, including the propagation, self-focusing, and guiding of laser pulses in uniform density channels and with preformed density channels.
Abstract: Laser-driven plasma-based accelerators, which are capable of supporting fields in excess of 100 GV/m, are reviewed. This includes the laser wakefield accelerator, the plasma beat wave accelerator, the self-modulated laser wakefield accelerator, plasma waves driven by multiple laser pulses, and highly nonlinear regimes. The properties of linear and nonlinear plasma waves are discussed, as well as electron acceleration in plasma waves. Methods for injecting and trapping plasma electrons in plasma waves are also discussed. Limits to the electron energy gain are summarized, including laser pulse diffraction, electron dephasing, laser pulse energy depletion, and beam loading limitations. The basic physics of laser pulse evolution in underdense plasmas is also reviewed. This includes the propagation, self-focusing, and guiding of laser pulses in uniform plasmas and with preformed density channels. Instabilities relevant to intense short-pulse laser-plasma interactions, such as Raman, self-modulation, and hose instabilities, are discussed. Experiments demonstrating key physics, such as the production of high-quality electron bunches at energies of 0.1-1 GeV, are summarized.

2,108 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that mobile electrons always give rise to a distortion of the ground state spin arrangement, since electron transfer lowers the energy by a term of first order in the distortion angles.
Abstract: This paper discusses some effects of mobile electrons in some antiferromagnetic lattices. It is shown that these electrons (or holes) always give rise to a distortion of the ground state spin arrangement, since electron transfer lowers the energy by a term of first order in the distortion angles. In the most typical cases this results in: (a) a nonzero spontaneous moment in low fields; (b) a lack of saturation in high fields; (c) simultaneous occurrence of "ferromagnetic" and "antiferromagnetic" lines in neutron diffraction patterns; (d) both ferromagnetic and antiferromagnetic branches in the spin wave spectra. Some of these properties have indeed been observed in compounds of mixed valency such as the manganites with low ${\mathrm{Mn}}^{4+}$ content. Similar considerations apply at finite temperatures, at least for the (most widespread) case where only the bottom of the carrier band is occupied at all temperatures of interest. The free energy is computed by a variational procedure, using simple carrier wave functions and an extension of the molecular field approximation. It is found that the canted arrangements are stable up to a well-defined temperature ${T}_{1}$. Above ${T}_{1}$ the system is either antiferromagnetic or ferromagnetic, depending upon the relative amount of mobile electrons. This behavior is not qualitatively modified when the carriers which are responsible for double exchange fall into bound states around impurity ions of opposite charge. Such bound states, however, will give rise to local inhomogeneities in the spin distortion, and to diffuse magnetic peaks in the neutron diffraction pattern. The possibility of observing these peaks and of eliminating the spurious spin-wave scattering is discussed in an Appendix.

2,073 citations

Journal ArticleDOI
01 Mar 1928-Nature
TL;DR: In this article, it was shown that in every case in which light is scattered by the molecules in dust-free liquids or gases, the diffuse radiation of the ordinary kind, having the same wave-length as the incident beam, is accompanied by a modified scattered radiation of degraded frequency.
Abstract: IF we assume that the X-ray scattering of the ‘unmodified’ type observed by Prof. Compton corresponds to the normal or average state of the atoms and molecules, while the ‘modified’ scattering of altered wave-length corresponds to their fluctuations from that state, it would follow that we should expect also in the case of ordinary light two types of scattering, one determined by the normal optical properties of the atoms or molecules, and another representing the effect of their fluctuations from their normal state. It accordingly becomes necessary to test whether this is actually the case. The experiments we have made have confirmed this anticipation, and shown that in every case in which light is scattered by the molecules in dust-free liquids or gases, the diffuse radiation of the ordinary kind, having the same wave-length as the incident beam, is accompanied by a modified scattered radiation of degraded frequency. Motivated by Arthur Compton's observation that X-rays could lose energy when scattered inelastically by electrons (the 'Compton effect'), Raman and Krishnan hypothesized that a similar transfer of energy should take place when normal light is scattered by atoms or molecules. The 'Raman effect' was demonstrated in 1928 and now forms the basis of a powerful spectroscopic tool.

2,051 citations

Journal ArticleDOI
TL;DR: The relaxation processes of electrons and spins systems following the absorption of femtosecondoptical pulses in ferromagnetic nickel have been studied using optical and magneto-optical pump-probetechniques and the experimental results are adequately described by a model including three interacting reservoirs.
Abstract: The relaxation processes of electrons and spins systems following the absorption of femtosecond optical pulses in ferromagnetic nickel have been studied using optical and magneto-optical pump-probe techniques. The magnetization of the film drops rapidly during the first picosecond, but different electron and spin dynamics are observed for delays in the range 0--5 ps. The experimental results are adequately described by a model including three interacting reservoirs (electron, spin, and lattice).

1,920 citations

Journal ArticleDOI
21 Apr 2000-Science
TL;DR: An overview is given here on this "orbital physics," which will be a key concept for the science and technology of correlated electrons.
Abstract: An electron in a solid, that is, bound to or nearly localized on the specific atomic site, has three attributes: charge, spin, and orbital. The orbital represents the shape of the electron cloud in solid. In transition-metal oxides with anisotropic-shaped d-orbital electrons, the Coulomb interaction between the electrons (strong electron correlation effect) is of importance for understanding their metal-insulator transitions and properties such as high-temperature superconductivity and colossal magnetoresistance. The orbital degree of freedom occasionally plays an important role in these phenomena, and its correlation and/or order-disorder transition causes a variety of phenomena through strong coupling with charge, spin, and lattice dynamics. An overview is given here on this "orbital physics," which will be a key concept for the science and technology of correlated electrons.

1,916 citations


Network Information
Related Topics (5)
Ion
107.5K papers, 2M citations
92% related
Excited state
102.2K papers, 2.2M citations
92% related
Magnetic field
167.5K papers, 2.3M citations
92% related
Scattering
152.3K papers, 3M citations
89% related
Magnetization
107.8K papers, 1.9M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20233,867
20228,136
20212,379
20202,712
20192,815