scispace - formally typeset
Search or ask a question
Topic

Electron backscatter diffraction

About: Electron backscatter diffraction is a research topic. Over the lifetime, 15184 publications have been published within this topic receiving 317847 citations. The topic is also known as: EBSD.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the microstructure, microchemistry, and microhardness variations across the architectural elements of the shells of the brachiopod species Megerlia truncata and Terebratalia transversa with scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), laser-ablation inductively coupled plasma mass-spectrometry (LA-ICP-MS), and Vickers micro-hardness indentation (VMHI).
Abstract: We analyzed the microstructure, microchemistry, and microhardness variations across the architectural elements of the shells of the brachiopod species Megerlia truncata and Terebratalia transversa with scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), laser-ablation inductively coupled plasma mass-spectrometry (LA-ICP-MS), and Vickers microhardness indentation (VMHI). The brachiopod valves consist of two principal layers of distinct calcite biomineralization: a thin, nanocrystalline, outer, hard protective layer with VMHI values exceeding 200 HV and a much thicker, inner, secondary layer of a hybrid organic-inorganic fiber composite material. The secondary layer is further structured into two sublayers, an outer part with VMHI values varying between 110 and 140 HV, and a softer inner part (70 < HV < 110). Whereas the size of the calcite crystals within the primary layer varies between a few tens of nanometers and 2 μm, calcite crystals within the secondary layer are fibrous, commonly reaching lengths exceeding 150 μm. Cross sections of these fibrous crystals are spade shaped, their dimensions being about 5 × 20 μm. The fibers are aligned parallel to each other. They are single crystals with their morphological fiber axes pointing almost parallel to the shell vault. The crystallographic orientation of the morphological fiber axes, however, is arbitrary within the a – b plane of the calcite lattice, whereas the c -axis (hexagonal unit-cell setting) is perpendicular to the morphological fiber axes and thus parallel to the radial vector of the valve vault. This morphology strongly indicates that fibrous growth is controlled by confinement within a cell in an organic matrix and not by attachment of biomolecules to specific crystallographic faces. We observe inhomogeneous Sr2+ and Mg2+ concentrations in the shell calcite within the 0.1–0.9 wt% range. Design of the shell appears to be highly optimized for mechanical performance. Crystal morphology and orientation as well as incorporated organic matter are structured hierarchially at different length levels forming a hybrid organic-inorganic fiber composite architecture.

102 citations

Journal ArticleDOI
TL;DR: In this paper, a sufficient dispersion of nanometre-scaled particles in Watts solution was reached by application of ultrasonic energy to the galvanic bath, and the typical columnar structure of pure Ni films was refined by means of ultrasound.

102 citations

Journal ArticleDOI
TL;DR: In this article, the structural and morphological features of the product phases obtained in isothermal treatments below the martensite start temperature in a low-carbon high-silicon steel were characterized.

102 citations

Journal ArticleDOI
Ji-Cheng Zhao1
TL;DR: In this article, a methodology is developed which extends the combinatorial approaches to structural materials research and development, which employs diffusion couples and "diffusion multiples" to create large variations (libraries) of compositions in bulk samples for fast and systematic surveys of bulk properties.
Abstract: A methodology is developed which extends the combinatorial approaches to structural materials research and development. This high-efficiency methodology employs diffusion couples and “diffusion multiples” to create large variations (libraries) of compositions in bulk samples for fast and systematic surveys of bulk properties. These composition libraries coupled with microanalytical techniques such as electron probe microanalysis, electron backscatter diffraction analysis, and nanoindentation tests can be used for efficient surveys of phases, equilibria, diffusion coefficients, precipitation kinetics, properties, and composition–phase–property relations (such as solution hardening and strengthening effect) for accelerated design of multicomponent alloys.

102 citations

Journal ArticleDOI
TL;DR: In this article, the authors quantified the microstructure and crystallography of drawn pearlitic steel wires by using a number of electron microscopy techniques, including scanning-and transmission-empowered microscopy, backscatter diffraction, and nanobeam diffraction.

102 citations


Network Information
Related Topics (5)
Microstructure
148.6K papers, 2.2M citations
91% related
Amorphous solid
117K papers, 2.2M citations
85% related
Oxide
213.4K papers, 3.6M citations
84% related
Thin film
275.5K papers, 4.5M citations
83% related
Ultimate tensile strength
129.2K papers, 2.1M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023822
20221,600
20211,026
2020954
2019901
2018805