scispace - formally typeset
Search or ask a question
Topic

Electron backscatter diffraction

About: Electron backscatter diffraction is a research topic. Over the lifetime, 15184 publications have been published within this topic receiving 317847 citations. The topic is also known as: EBSD.


Papers
More filters
Journal ArticleDOI
01 Mar 2015-Geology
TL;DR: In this paper, the deformation mechanisms, fluid-rock interaction, and development of porosity in a monzonite ultramylonite from Lofoten, northern Norway were investigated.
Abstract: Shear zones channelize fluid flow in Earth’s crust. However, little is known about deep crustal fluid migration and how fluids are channelized and distributed in a deforming lower crustal shear zone. This study investigates the deformation mechanisms, fluid-rock interaction, and development of porosity in a monzonite ultramylonite from Lofoten, northern Norway. The rock was deformed and transformed into an ultramylonite under lower crustal conditions (temperature = 700–730 °C, pressure = 0.65–0.8 GPa). The ultramylonite consists of feldspathic layers and domains of amphibole + quartz + calcite, which result from hydration reactions of magmatic clinopyroxene. The average grain size in both domains is <25 mm. Microstructural observations and electron backscatter diffraction analysis are consistent with diffusion creep as the dominant deformation mechanism in both domains. Festoons of isolated quartz grains define C'-type bands in feldspathic layers. These quartz grains do not show a crystallographic preferred orientation. The alignment of quartz grains is parallel to the preferred elongation of pores in the ultramylonites, as evidenced from synchrotron X-ray microtomography. Such C'-type bands are interpreted as creep cavitation bands resulting from diffusion creep deformation associated with grain boundary sliding. Mass-balance calculation indicates a 2% volume increase during the protolith-ultramylonite transformation, which is consistentmore » with synkinematic formation of creep cavities producing dilatancy. Thus, this study presents evidence that creep cavitation bands may control deep crustal porosity and fluid flow. Nucleation of new phases in creep cavitation bands inhibits grain growth and enhances the activity of grain size–sensitive creep, thereby stabilizing strain localization in the polymineralic ultramylonites.« less

92 citations

Journal ArticleDOI
18 Dec 2019-Joule
TL;DR: In this article, the authors used EBSD to map the local crystal orientations, grains, and grain boundaries in CH3NH3PbI3 (MAPI) perovskite thin films.

92 citations

Journal ArticleDOI
TL;DR: In this article, in situ microdiffraction experiments were conducted on focused ion beam machined single crystal Cu pillars oriented for double slip during deformation, the crystal undergoes lattice rotation on both the primary and critical slip system.
Abstract: In situ microdiffraction experiments were conducted on focused ion beam machined single crystal Cu pillars oriented for double slip. During deformation, the crystal undergoes lattice rotation on both the primary and critical slip system. In spite of the initial homogeneous microstructure of the Cu pillar, rotation sets in already at yield and is more important at the top of the pillar than at the bottom, demonstrating the inhomogeneous stress state during a microcompression experiment. The rotation results are confirmed by electron backscatter diffraction measurements.

91 citations

Journal ArticleDOI
TL;DR: In this article, a structure analysis of the Si(111)2\textcopyright{}1 surface is performed using extensive new low-energy electron-diffraction data (12 beams).
Abstract: A structure analysis of the Si(111)2\textcopyright{}1 surface is performed using extensive new low-energy electron-diffraction data (12 beams) Although the $\ensuremath{\pi}$-bonded chain model in its original form shows gross disagreement with low-energy electron diffraction, a modification of that structure gives moderate agreement The major modifications are a buckling in the outer chain and an overall compression

91 citations

Journal ArticleDOI
TL;DR: In this article, the effect of rolling temperature on its mechanical properties and microstructural characteristics by using tensile tests and SEM/electron back scattered diffraction, transmission electron microscope (TEM), DSC, X-ray diffraction (XRD) was studied.
Abstract: Aluminium alloy (6063) was severely rolled upto 92% thickness reduction at liquid nitrogen temperature and room temperature to study the effect of rolling temperature on its mechanical properties and microstructural characteristics by using tensile tests and SEM/electron back scattered diffraction (EBSD), transmission electron microscope (TEM), DSC, X-ray diffraction (XRD) as compared to room temperature rolled (RTR) material with the same deformation strain. An improved strength (257 MPa) of cryorolled 6063 Al alloy was observed as compared to the room temperature rolled alloy (232 MPa). The improved strength of cryorolled alloy is due to the accumulation of higher dislocation density than the room temperature rolled material. The tensile properties of cryorolled alloy and the alloy subjected to different annealing treatments were measured. The cryorolled alloy subjected to annealing treatment at 300 °C for 5 min exhibits an ultrafine-grained (UFG) microstructure with improved tensile strength and ductility.

91 citations


Network Information
Related Topics (5)
Microstructure
148.6K papers, 2.2M citations
91% related
Amorphous solid
117K papers, 2.2M citations
85% related
Oxide
213.4K papers, 3.6M citations
84% related
Thin film
275.5K papers, 4.5M citations
83% related
Ultimate tensile strength
129.2K papers, 2.1M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023822
20221,600
20211,026
2020954
2019901
2018805