scispace - formally typeset
Search or ask a question
Topic

Electron backscatter diffraction

About: Electron backscatter diffraction is a research topic. Over the lifetime, 15184 publications have been published within this topic receiving 317847 citations. The topic is also known as: EBSD.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a 3D study of the microstructure and texture below a conical nanoindent in a (1 1 1) Cu single crystal at nanometer-scale resolution was conducted using a joint high-resolution field emission scanning electron microscopy/electron backscatter diffraction (EBSD) set-up coupled with serial sectioning in a focused ion beam system in the form of a cross-beam 3D crystal orientation microscope.

306 citations

Journal ArticleDOI
TL;DR: In this paper, the texture and grain boundary structure of recrystallized materials are dependent upon the character of the deformed matrix and the selective nucleation and growth of crystallites from the deformation structure.

302 citations

Journal ArticleDOI
TL;DR: In this paper, the texture weakening effect of hot-rolled Mg-Y alloys was explored using electron backscattered diffraction (EBSD) analysis of intragranular misorientation axes (IGMA) indicate that the geometrically necessary dislocation (GND) content in dilute, hotrolled alloys contain primarily basal dislocations.
Abstract: Although conventional Mg alloys develop strong crystallographic textures during deformation that persist during annealing, the addition of rare earth (RE) elements can induce comparably weaker textures. The texture weakening effect is explored using hot-rolled Mg-Y alloys of a single phase to focus on the possibility of solute effects. Of the studied compositions, the richer alloys (≥0.17 at. pct) show the weakening effect, whereas the most dilute alloy (≤0.03 at. pct) does not. Electron backscattered diffraction (EBSD) analysis of intragranular misorientation axes (IGMA) indicate that the geometrically necessary dislocation (GND) content in dilute, hot-rolled alloys contain primarily basal 〈a〉 dislocations. At higher concentrations, the dislocations are predominantly prismatic 〈a〉 type. This change in the GND content suggests a change in dynamic recrystallization (DRX) mode. For example, nonbasal cross slip has been associated with continuous DRX. Furthermore, nonbasal slip might also promote more homogenous shear banding/twinning. Both of these mechanisms have been shown previously to give rise to more randomly oriented nuclei during DRX. Energy dispersive X-ray spectroscopy performed through transmission electron microscopy shows that Mg-Y exhibits significant grain boundary solute segregation, consistent with recent observations of solute clustering. Slow grain growth may be explained by solute drag. It is hypothesized that limited grain boundary mobility suppresses conventional discontinuous DRX, which has been shown to retain the deformation texture. The promotion of nonbasal slip and suppression of grain boundary mobility are proposed as solid solution-based mechanisms responsible for the observed texture weakening phenomenon in Mg rare earth alloys.

301 citations

Journal ArticleDOI
TL;DR: In this paper, the authors performed uniaxial compression tests on samples cut along the extrusion direction from AZ31 Mg alloy tubes and found that the widespread formation of intersecting {10-12} extension twins is responsible for the increased strain hardening rate.
Abstract: Uniaxial compression tests were performed on samples cut along the extrusion direction from AZ31 Mg alloy tubes. A stage of increasing work hardening rate was observed on representative true sigma-epsilon curves. Specimens compressed to various strain levels were examined by optical microscopy and electron backscattered diffraction (EBSD) techniques. The results indicate that the widespread formation of intersecting {10-12} extension twins is responsible for the increased strain hardening rate. (c) 2006 Elsevier B.V. All rights reserved.

295 citations


Network Information
Related Topics (5)
Microstructure
148.6K papers, 2.2M citations
91% related
Amorphous solid
117K papers, 2.2M citations
85% related
Oxide
213.4K papers, 3.6M citations
84% related
Thin film
275.5K papers, 4.5M citations
83% related
Ultimate tensile strength
129.2K papers, 2.1M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023822
20221,600
20211,026
2020954
2019901
2018805