scispace - formally typeset
Search or ask a question
Topic

Electron-beam lithography

About: Electron-beam lithography is a research topic. Over the lifetime, 8982 publications have been published within this topic receiving 143325 citations. The topic is also known as: e-beam lithography.


Papers
More filters
Proceedings ArticleDOI
TL;DR: In this article, the inorganic photoresists are made of HfO2 nanoparticles and have shown high etch resistance that is 25 times higher than polymer resists.
Abstract: Performance requirements for EUV resists will necessitate the development of entirely new resist platforms. As outlined in the ITRS, the new resists for EUVL must show high etch resistance (to enable pattern transfer using thinner films), improved LER and high sensitivity. A challenge in designing these new resists is the selection of molecular structures that will demonstrate superior characteristics in imaging and etch performance while maintaining minimal absorbance at EUV wavelengths. We have previously described the use of inorganic photoresists in 193 nm and e-beam lithography. These inorganic photoresists are made of HfO2 nanoparticles and have shown etch resistance that is 25 times higher than polymer resists. The high etch resistance of these materials allow the processing of very thin films (< 40 nm) and will push the resolution limits below 20 nm without pattern collapse. Additionally, the small size of the nanoparticles (< 5 nm) leads to low LER while the absorbance at EUV wavelengths is low. In this presentation we show that these inorganic resists can be applied to EUV lithography. We have successfully achieved high resolution patterning (<30 nm) with very high sensitivity and low LER.

54 citations

Journal ArticleDOI
Yoon-Chang Kim1, Young Rag Do1
TL;DR: The Bragg scattering effect is used to confirm the compounding of the millions of ~220 nm OLED light sources to form 2D periodic nanohole emission by comparing the angular dependence of the emission spectrum of the OLED array with that of a conventional OLED.
Abstract: We describe the architecture, fabrication, and electro-optical characteristics of a two-dimensional (2D), periodic, highly ordered array of subwavelength scale organic light-emitting diodes (OLEDs). A 2D nanohole array template was introduced onto a patterned ITO glass substrate by two-step irradiated hologram lithography and reactive ion etching, and then a 2D nanohole OLED array was prepared by following typical OLED fabrication procedures. Our analysis of the electro-optical characteristics of this device showed that shrinking the OLEDs to sub-wavelength scale has only a minimal effect on their optical properties. We also used the Bragg scattering effect to confirm the compounding of the millions of ~220 nm OLED light sources to form 2D periodic nanohole emission by comparing the angular dependence of the emission spectrum of the OLED array with that of a conventional OLED.

54 citations

Journal ArticleDOI
TL;DR: In this paper, the authors compared the properties of eight different plasmonic materials, namely, Ag, Al, Au, Cu, Mg, Ni, Pd, and Pt.
Abstract: Plasmonic nanostructures are used today for a variety of applications. Choosing the best suited plasmonic material for a specific application depends on several criteria, such as chemical and thermal stability, bulk plasma frequency, nonlinear response, and fabrication constraints. To provide a comprehensive summary, we compare these properties for eight different plasmonic materials, namely, Ag, Al, Au, Cu, Mg, Ni, Pd, and Pt. All these materials can be fabricated with electron beam lithography and subsequent evaporation of the desired material. First, we heated rod-antenna-type nanostructures made from these materials up to 1100 °C in air and investigated their linear optical response. Most structures lose their plasmonic properties at temperatures far below the melting point of the respective material. Gold, silver, and platinum structurally deform, whereas the other materials appear to chemically degrade. Second, to improve the thermal stability, structures with a 4 nm thin Al2O3 capping layer are fab...

54 citations

Journal ArticleDOI
TL;DR: In this article, aperiodic nanostructures for enhanced omnidirectional light extraction and coupling of 1.55μm radiation to distinctive optical resonances carrying of orbital angular momentum (OAM) using light emitting Si-based materials were designed.
Abstract: We engineer aperiodic nanostructures for enhanced omnidirectional light extraction and coupling of 1.55 μm radiation to distinctive optical resonances carrying of orbital angular momentum (OAM) using light emitting Si-based materials. By systematically studying nanopillar arrays with varying pillar separations and increasing degree of rotational symmetry in Fourier space, we show that omnidirectional extraction is achieved with circularly symmetric Fourier space, leading to best light emission enhancement from planar devices such as LEDs or lasers. To demonstrate the potential of active aperiodic structures with azimuthally isotropic k-space, we fabricate nanopillar arrays of erbium doped silicon-rich nitride using electron beam lithography and reactive ion etching. Experimental results obtained using leaky-mode photoluminescence spectroscopy prove over 10 times extraction enhancement at 1.55 μm from aperiodic golden angle spirals (GA spirals), in good agreement with design based on analytical Bragg scatt...

54 citations

Proceedings ArticleDOI
TL;DR: In this article, the authors developed new inorganic nanocomposite photoresists with significantly higher etch resistance than the usual polymer-based photoresist, which can provide several advantages to conventional chemically amplified resist(CAR) systems, including improved depth of focus (DOF) and reduced line edge roughness.
Abstract: The trend of ever decreasing feature sizes in subsequent lithography generations is paralleled by the need to reduce resist thickness to prevent pattern collapse. Thinner films limit the ability to transfer the pattern to the substrate during etch steps, obviating the need for a hardmask layer and thus increasing processing costs. For the 22 nm node, the critical aspect ratio will be less than 2:1, meaning 40-45 nm thick resists will be commonplace. To address this problem, we have developed new inorganic nanocomposite photoresists with significantly higher etch resistance than the usual polymer-based photoresists. Hafnium oxide nanoparticles are used as a core to build the inorganic nanocomposite into an imageable photoresist. During the sol-gel processing of nanoparticles, a variety of organic ligands can be used to control the surface chemistry of the final product. The different ligands on the surface of the nanoparticles give them unique properties, allowing these films to act as positive or negative tone photoresists for 193 nm or electron beam lithography. The development of such an inorganic resist can provide several advantages to conventional chemically amplified resist (CAR) systems. Beyond the etch resistance of the material, several other advantages exist, including improved depth of focus (DOF) and reduced line edge roughness (LER). This work will show etch data on a material that is ~3 times more etch-resistant than a PHOST standard. The refractive index of the resist at 193 nm is about 2.0, significantly improving the DOF. Imaging data, including cross-sections, will be shown for 60 nm lines/spaces (l/s) for 193 nm and e-beam lithography. Further, images and physical characteristics of the materials will be provided in both positive and negative tones for 193 nm and e-beam lithography.

54 citations


Network Information
Related Topics (5)
Thin film
275.5K papers, 4.5M citations
91% related
Silicon
196K papers, 3M citations
90% related
Photoluminescence
83.4K papers, 1.8M citations
87% related
Quantum dot
76.7K papers, 1.9M citations
87% related
Band gap
86.8K papers, 2.2M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202384
2022163
2021108
2020161
2019174
2018204