scispace - formally typeset
Search or ask a question
Topic

Electron-beam lithography

About: Electron-beam lithography is a research topic. Over the lifetime, 8982 publications have been published within this topic receiving 143325 citations. The topic is also known as: e-beam lithography.


Papers
More filters
Journal ArticleDOI
TL;DR: The results provided direct evidence, suggesting that the resistance change resulted from oxygen migration, with element mapping of LRS showing that the nanowire was zinc dominant indicating that the oxygen vacancies were introduced after resistance switching.
Abstract: Resistive random-access memory (ReRAM) has been of wide interest for its potential to replace flash memory in the next-generation nonvolatile memory roadmap. In this study, we have fabricated the Au/ZnO-nanowire/Au nanomemory device by electron beam lithography and, subsequently, utilized in situ transmission electron microscopy (TEM) to observe the atomic structure evolution from the initial state to the low-resistance state (LRS) in the ZnO nanowire. The element mapping of LRS showing that the nanowire was zinc dominant indicating that the oxygen vacancies were introduced after resistance switching. The results provided direct evidence, suggesting that the resistance change resulted from oxygen migration.

40 citations

Journal ArticleDOI
TL;DR: A method for submicron fabrication of flexible, thin-film structures fully encapsulated in biocompatible polymer poly(chloro-p-xylylene) (Parylene C) that improves feature size and resolution by an order of magnitude compared with prior work is presented.
Abstract: We present a method for submicron fabrication of flexible, thin-film structures fully encapsulated in biocompatible polymer poly(chloro-p-xylylene) (Parylene C) that improves feature size and resolution by an order of magnitude compared with prior work. We achieved critical dimensions as small as 250 nm by adapting electron beam lithography for use on vapor deposited Parylene-coated substrates and fabricated encapsulated metal structures, including conducting traces, serpentine resistors, and nano-patterned electrodes. Structures were probed electrically and mechanically demonstrating robust performance even under flexion or torsion. The developed fabrication process for electron beam lithography on Parylene-coated substrates and characterization of the resulting structures are presented in addition to a discussion of the challenges of applying electron beam lithography to polymers. As an application of the technique, a Parylene-based neural probe prototype was fabricated with 32 recording sites patterned along a 2 mm long shank, an electrode density surpassing any prior polymer probe. Flexible, polymer-coated electrodes with features as narrow as 250 nm have been produced using electron-beam lithography. The polymer Parylene C is widely used in implantable devices such as neural probes as a biocompatible and insulating coating for electrodes. However, it is challenging to pattern this polymer with electron beams because of its sensitivity to heat and charge. Ellis Meng and Kee Scholten from the University of Southern California, United States, overcame these limitation with a chromium-capped methacrylate resist mask. Depositing this mask onto a Parylene C-encapsulated titanium thin film helped to reduce thermal stress effects and electric charge build-up, which improved feature resolution by an order of magnitude beyond that of existing approaches. A prototype neural probe with 32 data recording sites along a 2-mm span—an electrode density that greatly exceeds previous polymer implants—demonstrated the potential of the technique.

40 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported a sevenfold improvement in the rate of contamination resist formation over previous experiments by using metastable neon atoms for nanolithography, and demonstrated the fabrication of 50nm wide features in GaAs with well-defined edges and an aspect ratio > 2:1.
Abstract: We report a sevenfold improvement in the rate of contamination resist formation over previous experiments by using metastable neon atoms for nanolithography. Chemically assisted ion beam etching was used to transfer the resist pattern into the substrate. We demonstrate the fabrication of 50-nm-wide features in GaAs with well-defined edges and an aspect ratio >2:1. These are the best resolution and highest aspect ratio features that have been achieved with metastable atom lithography. The resist formation rate by the metastable neon atoms and the etch selectivity of the contamination resist with GaAs were measured.

40 citations

Journal ArticleDOI
TL;DR: It is shown that ion beam lithography (IBL) may advantageously simplify Fresnel Zone Plates preparation and measured efficiencies in the 1st and 2nd order of diffraction reach the theoretical predictions.
Abstract: Fresnel Zone Plates (FZP) are to date very successful focusing optics for X-rays. Established methods of fabrication are rather complex and based on electron beam lithography (EBL). Here, we show that ion beam lithography (IBL) may advantageously simplify their preparation. A FZP operable from the extreme UV to the limit of the hard X-ray was prepared and tested from 450 eV to 1500 eV. The trapezoidal profile of the FZP favorably activates its 2nd order focus. The FZP with an outermost zone width of 100 nm allows the visualization of features down to 61, 31 and 21 nm in the 1st, 2nd and 3rd order focus respectively. Measured efficiencies in the 1st and 2nd order of diffraction reach the theoretical predictions.

40 citations

Journal ArticleDOI
TL;DR: In this article, the optical properties of arrays of closely spaced metal nanoparticles were investigated in view of their potential to guide electromagnetic energy with a lateral mode confinement below the diffraction limit of light.
Abstract: We investigate the optical properties of arrays of closely spaced metal nanoparticles in view of their potential to guide electromagnetic energy with a lateral mode confinement below the diffraction limit of light. Finite-difference time-domain simulations of short arrays of noble metal nanospheres show that electromagnetic pulses at optical frequencies can propagate along the arrays due to near-field interactions between plasmon-polariton modes of adjacent nanoparticles. Near-field microscopy enables the study of energy transport in these plasmon waveguides and shows experimental evidence for energy propagation over a distance of 0.5 νm for plasmon waveguides consisting of spheroidal silver particles fabricated using electron beam lithography.

40 citations


Network Information
Related Topics (5)
Thin film
275.5K papers, 4.5M citations
91% related
Silicon
196K papers, 3M citations
90% related
Photoluminescence
83.4K papers, 1.8M citations
87% related
Quantum dot
76.7K papers, 1.9M citations
87% related
Band gap
86.8K papers, 2.2M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202384
2022163
2021108
2020161
2019174
2018204