scispace - formally typeset
Search or ask a question
Topic

Electron-beam lithography

About: Electron-beam lithography is a research topic. Over the lifetime, 8982 publications have been published within this topic receiving 143325 citations. The topic is also known as: e-beam lithography.


Papers
More filters
Journal ArticleDOI
TL;DR: The Langmuir trough enables high quality organic layers (Langmuir-Blodgett films) to be deposited onto a variety of substrates as discussed by the authors, including two-dimensional magnetism, integrated and electro-optics, electron beam lithography, biological membranes, charge injection devices and field effect transistors.
Abstract: The Langmuir trough enables high quality organic layers (Langmuir-Blodgett films) to be deposited onto a variety of substrates. This article describes the preparation and characterization of these monolayer and multilayer films and reviews many of their potential applications; these include two-dimensional magnetism, integrated and electro-optics, electron beam lithography, biological membranes, charge injection devices and field-effect transistors.

1,269 citations

Journal ArticleDOI
TL;DR: In this article, the authors report on the resolution limits of EBL in the conventional polymethylmethacrylate (PMMA) organic resist and show that resolution can be pushed below 10 nm for isolated features and dense arrays of periodic structures can be fabricated at a pitch of 30 nm, leading to a density close to 700 Gbit/in2.

1,017 citations

Journal ArticleDOI
TL;DR: The fabrication methods and physical properties of ordered magnetic nanostructures with dimensions on the submicron to nanometer scale are reviewed in this article, where various types of nanofabrication techniques are described, and their capabilities and limitations in achieving magnetic nano-structures are discussed.

842 citations

Journal ArticleDOI
Takashi Ito1, Shinji Okazaki
31 Aug 2000-Nature
TL;DR: Although the introduction of shorter-wavelength light sources and resolution-enhancement techniques should help maintain the current rate of device miniaturization for several more years, a point will be reached where optical lithography can no longer attain the required feature sizes.
Abstract: The phenomenal rate of increase in the integration density of silicon chips has been sustained in large part by advances in optical lithography--the process that patterns and guides the fabrication of the component semiconductor devices and circuitry. Although the introduction of shorter-wavelength light sources and resolution-enhancement techniques should help maintain the current rate of device miniaturization for several more years, a point will be reached where optical lithography can no longer attain the required feature sizes. Several alternative lithographic techniques under development have the capability to overcome these resolution limits but, at present, no obvious successor to optical lithography has emerged.

764 citations

Journal ArticleDOI
TL;DR: In this paper, the experimental realization of highly efficient optical elements built up from metal nanostructures to manipulate surface plasmon polaritons propagating along a silver/polymer interface is reported.
Abstract: We report the experimental realization of highly efficient optical elements built up from metal nanostructures to manipulate surface plasmon polaritons propagating along a silver/polymer interface. Mirrors, beamsplitters, and interferometers produced by electron-beam lithography are investigated. The plasmon fields are imaged by detecting the fluorescence of molecules dispersed in the polymer.

586 citations


Network Information
Related Topics (5)
Thin film
275.5K papers, 4.5M citations
91% related
Silicon
196K papers, 3M citations
90% related
Photoluminescence
83.4K papers, 1.8M citations
87% related
Quantum dot
76.7K papers, 1.9M citations
87% related
Band gap
86.8K papers, 2.2M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202384
2022163
2021108
2020161
2019174
2018204