Topic

# Electronic band structure

About: Electronic band structure is a research topic. Over the lifetime, 25997 publications have been published within this topic receiving 669557 citations. The topic is also known as: band structure.

##### Papers published on a yearly basis

##### Papers

More filters

••

TL;DR: In this article, the authors present a comprehensive, up-to-date compilation of band parameters for the technologically important III-V zinc blende and wurtzite compound semiconductors.

Abstract: We present a comprehensive, up-to-date compilation of band parameters for the technologically important III–V zinc blende and wurtzite compound semiconductors: GaAs, GaSb, GaP, GaN, AlAs, AlSb, AlP, AlN, InAs, InSb, InP, and InN, along with their ternary and quaternary alloys. Based on a review of the existing literature, complete and consistent parameter sets are given for all materials. Emphasizing the quantities required for band structure calculations, we tabulate the direct and indirect energy gaps, spin-orbit, and crystal-field splittings, alloy bowing parameters, effective masses for electrons, heavy, light, and split-off holes, Luttinger parameters, interband momentum matrix elements, and deformation potentials, including temperature and alloy-composition dependences where available. Heterostructure band offsets are also given, on an absolute scale that allows any material to be aligned relative to any other.

6,349 citations

••

TL;DR: In this paper, the structure of the electronic energy bands and Brillouin zones for graphite was developed using the "tight binding" approximation, and it was found that graphite is a semi-conductor with zero activation energy, but they are created at higher temperatures by excitation to a band contiguous to the highest one which is normally filled.

Abstract: The structure of the electronic energy bands and Brillouin zones for graphite is developed using the "tight binding" approximation. Graphite is found to be a semi-conductor with zero activation energy, i.e., there are no free electrons at zero temperature, but they are created at higher temperatures by excitation to a band contiguous to the highest one which is normally filled. The electrical conductivity is treated with assumptions about the mean free path. It is found to be about 100 times as great parallel to as across crystal planes. A large and anisotropic diamagnetic susceptibility is predicted for the conduction electrons; this is greatest for fields across the layers. The volume optical absorption is accounted for.

4,395 citations

••

TL;DR: In this paper, a new type of metallic structure has been developed that is characterized by having high surface impedance, which is analogous to a corrugated metal surface in which the corrugations have been folded up into lumped-circuit elements and distributed in a two-dimensional lattice.

Abstract: A new type of metallic electromagnetic structure has been developed that is characterized by having high surface impedance. Although it is made of continuous metal, and conducts dc currents, it does not conduct ac currents within a forbidden frequency band. Unlike normal conductors, this new surface does not support propagating surface waves, and its image currents are not phase reversed. The geometry is analogous to a corrugated metal surface in which the corrugations have been folded up into lumped-circuit elements, and distributed in a two-dimensional lattice. The surface can be described using solid-state band theory concepts, even though the periodicity is much less than the free-space wavelength. This unique material is applicable to a variety of electromagnetic problems, including new kinds of low-profile antennas.

4,264 citations

••

TL;DR: In this paper, the LCAO interpolation method was used as an interpolation technique in connection with more accurate calculations made by the cellular or orthogonalized plane-wave methods.

Abstract: The LCAO, or Bloch, or tight binding, approximation for solids is discussed as an interpolation method, to be used in connection with more accurate calculations made by the cellular or orthogonalized plane-wave methods. It is proposed that the various integrals be obtained as disposable constants, so that the tight binding method will agree with accurate calculations at symmetry points in the Brillouin zone for which these calculations have been made, and that the LCAO method then be used for making calculations throughout the Brillouin zone. A general discussion of the method is given, including tables of matrix components of energy for simple cubic, face-centered and body-centered cubic, and diamond structures. Applications are given to the results of Fletcher and Wohlfarth on Ni, and Howarth on Cu, as illustrations of the fcc case. In discussing the bcc case, the splitting of the energy bands in chromium by an antiferromagnetic alternating potential is worked out, as well as a distribution of energy states for the case of no antiferromagnetism. For diamond, comparisons are made with the calculations of Herman, using the orthogonalized plane-wave method. The case of such crystals as InSb is discussed, and it is shown that their properties fit in with the energy band picture.

3,696 citations

••

TL;DR: In this paper, the authors describe the synthesis of bilayer graphene thin films deposited on insulating silicon carbide and report the characterization of their electronic band structure using angle-resolved photoemission.

Abstract: We describe the synthesis of bilayer graphene thin films deposited on insulating silicon carbide and report the characterization of their electronic band structure using angle-resolved photoemission. By selectively adjusting the carrier concentration in each layer, changes in the Coulomb potential led to control of the gap between valence and conduction bands. This control over the band structure suggests the potential application of bilayer graphene to switching functions in atomic-scale electronic devices.

2,988 citations