Topic

# Electronic filter

About: Electronic filter is a research topic. Over the lifetime, 13207 publications have been published within this topic receiving 93063 citations. The topic is also known as: filter.

##### Papers published on a yearly basis

##### Papers

More filters

•

01 Jan 2007

TL;DR: The p-q theory in three-phase, four-wire Shunt Active Filters as discussed by the authors has been applied to power flow control in power electronics equipment and has been shown to be useful in many applications.

Abstract: Preface. 1. Introduction. 1.1. Concepts and Evolution of Electric Power Theory. 1.2. Applications of the p-q Theory to Power Electronics Equipment. 1.3. Harmonic Voltages in Power Systems. 1.4. Identified and Unidentified Harmonic-Producing Loads. 1.5. Harmonic Current and Voltage Sources. 1.6. Basic Principles of Harmonic Compensation. 1.7. Basic Principles of Power Flow Control. References. 2. Electric Power Definitions: Background. 2.1. Power Definitions Under Sinusoidal Conditions. 2.2. Voltage and Current Phasors and the Complex Impedance. 2.3. Complex Power and Power Factor. 2.4. Concepts of Power Under Non-Sinusoidal Conditions -Conventional Approaches. 2.5. Electric Power in Three-Phase Systems. 2.6. Summary. References. 3 The Instantaneous Power Theory. 3.1. Basis of the p-q Theory. 3.2. The p-q Theory in Three-Phase, Three-Wire Systems. 3.3. The p-q Theory in Three-Phase, Four-Wire Systems. 3.4. Instantaneous abc Theory. 3.5. Comparisons between the p-q Theory and the abc Theory. 3.6. Summary. References. 4 Shunt Active Filters. 4.1. General Description of Shunt Active Filters. 4.2. Three-Phase, Three-Wire Shunt Active Filters. 4.3. Three-Phase, Four-Wire Shunt Active Filters. 4.4. Shunt Selective Harmonic Compensation. 4.5. Summary. References. 5 Hybrid and Series Active Filters. 5.1. Basic Series Active Filter. 5.2. Combined Series Active Filter and Shunt Passive Filter. 5.3. Series Active Filter Integrated with a Double-Series Diode Rectifier. 5.4. Comparisons Between Hybrid and Pure Active Filters. 5.5. Conclusions. References. 6 Combined Series and Shunt Power Conditioners. 6.1. The Unified Power Flow Controller (UPFC). 6.2. The Unified Power Quality Conditioner (UPQC). 6.3. The Universal Active Power Line Conditioner (UPLC). 6.4. Summary. References. Index.

2,038 citations

••

TL;DR: An observer on SO(3), termed the explicit complementary filter, that requires only accelerometer and gyro outputs; is suitable for implementation on embedded hardware; and provides good attitude estimates as well as estimating the gyro biases online.

Abstract: This paper considers the problem of obtaining good attitude estimates from measurements obtained from typical low cost inertial measurement units. The outputs of such systems are characterized by high noise levels and time varying additive biases. We formulate the filtering problem as deterministic observer kinematics posed directly on the special orthogonal group SO (3) driven by reconstructed attitude and angular velocity measurements. Lyapunov analysis results for the proposed observers are derived that ensure almost global stability of the observer error. The approach taken leads to an observer that we term the direct complementary filter. By exploiting the geometry of the special orthogonal group a related observer, termed the passive complementary filter, is derived that decouples the gyro measurements from the reconstructed attitude in the observer inputs. Both the direct and passive filters can be extended to estimate gyro bias online. The passive filter is further developed to provide a formulation in terms of the measurement error that avoids any algebraic reconstruction of the attitude. This leads to an observer on SO(3), termed the explicit complementary filter, that requires only accelerometer and gyro outputs; is suitable for implementation on embedded hardware; and provides good attitude estimates as well as estimating the gyro biases online. The performance of the observers are demonstrated with a set of experiments performed on a robotic test-bed and a radio controlled unmanned aerial vehicle.

1,581 citations

••

TL;DR: Graphene nanosheets have a preponderance of exposed edge planes that greatly increases charge storage as compared with that of designs that rely on basal plane surfaces, and capacitors constructed with these electrodes could be smaller than the low-voltage aluminum electrolyte capacitors that are typically used in electronic devices.

Abstract: Electric double-layer capacitors (DLCs) can have high storage capacity, but their porous electrodes cause them to perform like resistors in filter circuits that remove ripple from rectified direct current. We have demonstrated efficient filtering of 120-hertz current with DLCs with electrodes made from vertically oriented graphene nanosheets grown directly on metal current collectors. This design minimized electronic and ionic resistances and produced capacitors with RC time constants of less than 200 microseconds, in contrast with ~1 second for typical DLCs. Graphene nanosheets have a preponderance of exposed edge planes that greatly increases charge storage as compared with that of designs that rely on basal plane surfaces. Capacitors constructed with these electrodes could be smaller than the low-voltage aluminum electrolyte capacitors that are typically used in electronic devices.

1,233 citations

•

27 Jul 2007TL;DR: Radio Frequency Filter Networks for Wireless Communications-The System Perspective and Computer-Aided Synthesis of Characteristic Polynomials shows the impact of system design on the requirements of filter networks.

Abstract: Foreword Preface Acknowledgments 1 Radio Frequency (RF) Filter Networks for Wireless Communications-The System Perspective PART I: INTRODUCTION TO A COMMUNICATION SYSTEM, RADIO SPECTRUM, AND INFORMATION PART II: NOISE IN A COMMUNICATION CHANNEL PART III: IMPACT OF SYSTEM DESIGN ON THE REQUIRMENTS OF FILTER NETWORKS 2 Fundamentals of Circuit Theory Approximation 3 Characterization of Lossless Lowpass Prototype filter functions 4 Computer-Aided Synthesis of Characteristic Polynomials 5 Analysis of Multiport Microwave Networks 6 Synthesis of a General Class of the Chebyshev Filter Function 7 Synthesis of Network - Circuit Approach 8 Coupling Matrix Synthesis of Filter Networks 9 Reconfiguration of the Folded Coupling Matrix 10 Synthesis and Application of Extracted Pole and Trisection Elements 11 Microwave Resonators 12 Waveguide and Coaxial Lowpass Filters 13 Waveguide Realization of Single- and Dual-Mode Resonator Filters 14 Design and Physical Realization of Coupled Resonator Filters 15 Advanced EM-Based Design Techniques for Microwave Filters 16 Dielectric Resonator Filters 17 AllPass Phase and Group Delay Equalizer Networks 18 Multiplexer Theory and Design 19 Computer-Aided Diagnosis and Tuning of Microwave Filters 20 High-Power Considerations in Microwave Filter Networks Appendix A Appendix B Appendix C Appendix D Index

959 citations

••

05 Dec 2005TL;DR: This paper deals with general pure active filters for power conditioning, and specific hybridactive filters for harmonic filtering of three-phase diode rectifiers.

Abstract: Unlike traditional passive harmonic filters, modern active harmonic filters have the following multiple functions: harmonic filtering, damping,isolation and termination, reactive-power control for power factor correction and voltage regulation, load balancing, voltage-flicker reduction, and/or their combinations. Significant cost reductions in both power semiconductor devices and signal processing devices have inspired manufactures to put active filters on the market. This paper deals with general pure active filters for power conditioning, and specific hybrid active filters for harmonic filtering of three-phase diode rectifiers.

954 citations