scispace - formally typeset
Search or ask a question
Topic

Electronic stability control

About: Electronic stability control is a research topic. Over the lifetime, 3293 publications have been published within this topic receiving 40098 citations. The topic is also known as: dynamic stability control & ESC.


Papers
More filters
Book
31 Oct 2005
TL;DR: In this paper, the authors present a mean value model of SI and Diesel engines, and design and analysis of passive and active automotive suspension components, as well as semi-active and active suspensions.
Abstract: 1. Introduction.- 2.Lateral Vehicle Dynamics.- 3. Steering Control For Automated Lane Keeping.- 4. Longitudinal Vehicle Dynamics.- 5. Introduction to Longitudinal Control.- 6. Adaptive Cruise Control.- 7. Longitudinal Control for Vehicle Platoons.- 8. Electronic Stability Control.- 9. Mean Value Modeling Of SI and Diesel Engines.- 10. Design and Analysis of Passive Automotive Suspensions.- 11. Active Automotive Suspensions.-12. Semi-Active Suspensions.- 13. Lateral and Longitudinal Tires Forces.- 14. Tire-Road Friction Measurement on Highway Vehicles.- 15. Roll Dynamics and Rollover Prevention.- 16. Dynamics and Control of Hybrid Gas Electric Vehicles.

3,669 citations

Book
13 Dec 1978
TL;DR: In this article, the authors present an approach to the prediction of normal pressure distribution under a track and a simplified method for analysis of tracked vehicle performance, based on the Cone Index.
Abstract: Preface. Preface to the Third Edition. Preface to the Second Edition. Preface to the First Edition. Conversion Factors. Nomenclature. Introduction. 1. MECHANICS OF PNEUMATIC TIRES. 1.1 Tire Forces and Moments. 1.2 Rolling Resistance of Tires. 1.3 Tractive (Braking) Effort and Longitudinal Slip (Skid). 1.4 Cornering Properties of Tires. 1.4.1 Slip Angle and Cornering Force. 1.4.2 Slip Angle and Aligning Torque. 1.4.3 Camber and Camber Thrust. 1.4.4 Characterization of Cornering Behavior of. Tires. 1.5 Performance of Tires on Wet Surfaces. 1.6 Ride Properties of Tires. References. Problems. 2. MECHANICS OF VEHICLE-TERRAIN INTERACTION--TERRAMECHANICS. 2.1 Distribution of Stresses in the Terrain Under Vehicular Loads. 2.2 Applications of the Theory of Plastic Equilibrium to the Mechanics of Vehicle--Terrain Interaction. 2.3 Empirical Methods for Predicting Off-Road Vehicle Performance. 2.3.1 Empirical Methods Based on the Cone Index. 2.3.2 Empirical Methods Based on the Mean Maximum Pressure. 2.4 Measurement and Characterization of Terrain Response. 2.4.1 Characterization of Pressure-Sinkage Relationship. 2.4.2 Characterization of the Response to Repetitive Loading. 2.4.3 Characterization of the Shear Stress-Shear Displacement Relationship. 2.5 A Simplified Method for Analysis of Tracked Vehicle Performance. 2.5.1 Motion Resistance of a Track. 2.5.2 Tractive Effort and Slip of a Track. 2.6 A Computer-Aided Method for Evaluating the Performance of Vehicles with Flexible Tracks. 2.6.1 Approach to the Prediction of Normal Pressure Distribution under a Track. 2.6.2 Approach to the Prediction of Shear Stress Distribution under a Track. 2.6.3 Prediction of Motion Resistance and Drawbar Pull as Functions of Track Slip. 2.6.4 Experimental Substantiation. 2.6.5 Applications to Parametric Analysis and Design Optimization. 2.7 A Computer-Aided Method for Evaluating the Performance of Vehicles with Long-Pitch Link Tracks. 2.7.1 Basic Approach. 2.7.2 Experimental Substantiation. 2.7.3 Applications to Parametric Analysis and Design Optimization. 2.8 Methods for Parametric Analysis of Wheeled Vehicle Performance. 2.8.1 Motion Resistance of a Rigid Wheel. 2.8.2 Motion Resistance of a Pneumatic Tire. 2.8.3 Tractive Effort and Slip of a Wheel. 2.9 A Computer-Aided Method for Evaluating the Performance of Off-Road Wheeled Vehicles. 2.9.1 Basic Approach. 2.9.2 Experimental Substantiation. 2.9.3 Applications to Parametric Analysis. 2.10 Finite Element and Discrete Element Methods for the Study of Vehicle-Terrain Interaction. 2.10.1 The Finite Element Method. 2.10.2 The Discrete (Distinct) Element Method. References. Problems. 3. PERFORMANCE CHARACTERISTICS OF ROAD VEHICLES. 3.1 Equation of Motion and Maximum Tractive Effort. 3.2 Aerodynamic Forces and Moments. 3.3 Vehicle Power Plant and Transmission Characteristics. 3.3.1 Internal Combustion Engines. 3.3.2 Electric Drives. 3.3.3 Hybrid Drives. 3.3.4 Fuel Cells. 3.3.5 Transmission Characteristics. 3.4 Vehicle Power Plant and Transmission Characteristics. 3.4.1 Power Plant Characteristics. 3.4.2 Transmission Characteristics. 3.5 Prediction of Vehicle Performance. 3.5.1 Acceleration Time and Distance. 3.5.2 Gradability. 3.6 Operating Fuel Economy. 3.7 Engine and Transmission Matching. 3.8 Braking Performance. 3.8.1 Braking Characteristics of a Two-Axle. Vehicle. 3.8.2 Braking Efficiency and Stopping Distance. 3.8.3 Braking Characteristics of a Tractor-Semitrailer. 3.8.4 Antilock Brake Systems. 3.8.5 Traction Control Systems. References. Problems. 4. PERFORMANCE CHARACTERISTICS OF OFF-ROAD VEHICLES. 4.1 Drawbar Performance. 4.1.1 Drawbar Pull and Drawbar Power. 4.1.2 Tractive Efficiency. 4.1.3 Four Wheel Drive. 4.1.5 Coefficient of Traction. 4.1.4 Weight-to-Power Ratio for Off-Road Vehicles. 4.2 Fuel Economy of Cross-Country Operations. 4.3 Transport Productivity and Transport Efficiency. 4.4 Mobility Map and Mobility Profile. 4.5 Selection of Vehicle Configurations for Off-Road Operations. References. Problems. 5. HANDLING CHARACTERISTICS OF ROAD VEHICLES. 5.1 Steering Geometry. 5.2 Steady-State Handling Characteristics of a Two-Axle Vehicle. 5.2.1 Neutral Steer. 5.2.2 Understeer. 5.2.3 Oversteer. 5.3 Steady-State Response to Steering Input. 5.3.1 Yaw Velocity Response. 5.3.2 Lateral Acceleration Response. 5.3.3 Curvature Response. 5.4 Testing of Handling Characteristics. 5.4.1 Constant Radius Test. 5.4.2 Constant Speed Test. 5.4.3 Constant Steer Angle Test. 5.5 Transient Response Characteristics. 5.6 Directional Stability. 5.6.1 Criteria for Directional Stability. 5.6.2 Vehicle Stability Control. 5.7 Steady-State Handling Characteristics of a Tractor-Semitrailer. 5.8 Simulation Models for the Directional Behavior of Articulated Road Vehicles. References. Problems. 6. STEERING OF TRACKED VEHICLES. 6.1 Simplified Analysis of the Kinetics of Skid-Steering. 6.2 Kinematics of Skid-Steering. 6.3 Skid-Steering at High Speeds. 6.4 A General Theory for Skid-Steering on Firm Ground. 6.4.1 Shear Displacement on the Track-Ground Interface. 6.4.2 Kinetics in a Steady-State Turning Maneuver. 6.4.3 Experimental Substantiation. 6.4.4 Coefficient of Lateral Resistance. 6.5 Power Consumption of Skid-Steering. 6.6 Steering Mechanisms for Tracked Vehicles. 6.6.1 Clutch/Brake Steering System. 6.6.2 Controlled Differential Steering System. 6.6.3 Planetary Gear Steering System. 6.7 Articulated Steering. References. Problems. 7. VEHICLE RIDE CHARACTERISTICS. 7.1 Human Response to Vibration. 7.1.1 International Standard ISO 2631-1:1985. 7.1.2 International Standard ISO 2631-1:1997. 7.2 Vehicle Ride Models. 7.2.1 Two-Degree-of-Freedom Vehicle Model for Sprung and Unsprung Mass. 7.2.2 Numerical Methods for Determining the Response of a Quarter-Car Model to Irregular Surface Profile Excitation. 7.2.3 Two-Degree-of-Freedom Vehicle Model for Pitch and Bounce. 7.3 Introduction to Random Vibration. 7.3.1 Surface Elevation Profile as a Random Function. 7.3.2 Frequency Response Function. 7.3.3 Evaluation of Vehicle Vibration in Relation to the Ride Comfort Criterion. 7.4 Active and Semi-Active Suspensions. References. Problems. 8. INTRODUCTION TO AIR-CUSHION VEHICLES. 8.1 Air-Cushion Systems and Their Performance. 8.1.1 Plenum Chamber. 8.1.2 Peripheral Jet. 8.2 Resistance of Air-Cushion Vehicles. 8.3 Suspension Characteristics of Air-Cushion Systems. 8.3.1 Heave (or Bounce) Stiffness. 8.3.2 Roll Stiffness. 8.4 Directional Control of Air-Cushion Vehicles. References. Problems. Index.

2,930 citations

Patent
14 Jun 2005
TL;DR: In this paper, the steering angle of a vehicle is monitored using position sensors of an electric motor of an EAS system, which is stored in nonvolatile memory during a steering calibration procedure, such as an end-of-line calibration in a vehicle assembly plant.
Abstract: The steering angle of a vehicle is monitored using position sensors of an electric motor of an electric power assisted steering (EPAS) system. A position of the electric motor corresponding to the straight-ahead, center position of the steering system is stored in non-volatile memory during a steering calibration procedure, such as an end-of-line calibration in a vehicle assembly plant. Following power loss due to a dead battery, a steering angle zeroing procedure performed in a vehicle stability control (VSC) system generates a center position with enough accuracy to be within one electrical cycle of the motor. The pre-stored electric motor position is then used to determine the electrical cycle where the center position was located, and accurate monitoring of steering angle is resumed.

664 citations

Book
31 Aug 2008
TL;DR: In this paper, the authors present advanced modeling, analysis and control techniques of Flexible AC Transmission Systems (FACTS) for a range of power-system control problems: from steady-state voltage and power flow control, to voltage and reactive power control, voltage stability control, and small signal stability control using FACTS controllers.
Abstract: The extended and revised second edition of this successful monograph presents advanced modeling, analysis and control techniques of Flexible AC Transmission Systems (FACTS). The book covers comprehensively a range of power-system control problems: from steady-state voltage and power flow control, to voltage and reactive power control, to voltage stability control, to small signal stability control using FACTS controllers. In the six years since the first edition of the book has been published research on the FACTS has continued to flourish while renewable energy has developed into a mature and booming global green business. The second edition reflects the new developments in converter configuration, smart grid technologies, super power grid developments worldwide, new approaches for FACTS control design, new controllers for distribution system control, and power electronic controllers in wind generation operation and control. The latest trends of VSC-HVDC with multilevel architecture have been included and four completely new chapters have been added devoted to Multi-Agent Systems for Coordinated Control of FACTS-devices, Power System Stability Control using FACTS with Multiple Operating Points, Control of a Looping Device in a Distribution System, and Power Electronic Control for Wind Generation.

497 citations

Patent
Kin C. Fung1, Timothy J. Dick1
31 Jan 2012
TL;DR: In this paper, a driver's slow reaction time, attention lapse and/or alertness is assessed by monitoring vehicle systems and driver monitoring systems to accommodate for slow reaction times, attention lapses, and alertness.
Abstract: Methods of assessing driver behavior include monitoring vehicle systems and driver monitoring systems to accommodate for a driver's slow reaction time, attention lapse and/or alertness. When it is determined that a driver is drowsy, for example, the response system may modify the operation of one or more vehicle systems. The systems that may be modified include: visual devices, audio devices, tactile devices, antilock brake systems, automatic brake prefill systems, brake assist systems, auto cruise control systems, electronic stability control systems, collision warning systems, lane keep assist systems, blind spot indicator systems, electronic pretensioning systems and climate control systems.

398 citations


Network Information
Related Topics (5)
Control system
129K papers, 1.5M citations
82% related
Control theory
299.6K papers, 3.1M citations
81% related
Electric power system
133K papers, 1.7M citations
79% related
Wind power
99K papers, 1.5M citations
77% related
Robustness (computer science)
94.7K papers, 1.6M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202340
2022126
2021110
2020199
2019227
2018220