scispace - formally typeset
Search or ask a question
Topic

Electronic structure

About: Electronic structure is a research topic. Over the lifetime, 43996 publications have been published within this topic receiving 1163940 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors used double zeta plus polarization level atomic pair natural orbital basis sets to calculate molecular self-consistent field (SCF) energies and correlation energies.
Abstract: The major source of errror in most ab initio calculations of molecular energies is the truncation of the one‐electron basis set. A complete basis set model chemistry is defined to include corrections for basis set truncation errors. This model uses double zeta plus polarization level atomic pair natural orbital basis sets to calculate molecular self‐consistent‐field (SCF) energies and correlation energies. The small corrections to give the complete basis set SCF energies are then estimated using the l−6 asymptotic convergence of the multicenter angular momentum expansion. The calculated correlation energies of the atoms He, Be, and Ne, and of the hydrides LiH, BH3, CH4, NH3, H2O, and HF, using the double zeta plus polarization basis sets vary from 83.0% to 91.2% of the experimental correlation energies. However, extrapolation of each of the pair energies and pair‐coupling terms to the complete basis set values using the asymptotic convergence of pair natural orbital expansions retrieves from 99.5±0.7% to ...

2,329 citations

Journal ArticleDOI
01 Jan 1998-Nature
TL;DR: In this paper, the structure and electronic properties of single-walled carbon nanotubes (SWNTs) were investigated using tunnelling microscopy, and it was shown that the SWNT samples exhibit many different structures, with no one species dominating.
Abstract: Carbon nanotubes1 are predicted to be metallic or semiconducting depending on their diameter and the helicity of the arrangement of graphitic rings in their walls2,3,4,5. Scanning tunnelling microscopy (STM) offers the potential to probe this prediction, as it can resolve simultaneously both atomic structure and the electronic density of states. Previous STM studies of multi-walled nanotubes6,7,8,9 and single-walled nanotubes (SWNTs)10 have provided indications of differing structures and diameter-dependent electronic properties, but have not revealed any explicit relationship between structure and electronic properties. Here we report STM measurements of the atomic structure and electronic properties of SWNTs. We are able to resolve the hexagonal-ring structure of the walls, and show that the electronic properties do indeed depend on diameter and helicity. We find that the SWNT samples exhibit many different structures, with no one species dominating.

2,276 citations

Journal ArticleDOI
TL;DR: A new theory is presented for describing band gaps and electronic structures of transition-metal compounds and both the metallic sulfides and insulating oxides and halides occur in a quite natural manner.
Abstract: A new theory is presented for describing band gaps and electronic structures of transition-metal compounds. A theoretical phase diagram is presented in which both the metallic sulfides and insulating oxides and halides occur in a quite natural manner.

2,190 citations

Journal ArticleDOI
TL;DR: In this article, a review of the basic ideas and techniques of spectral density functional theory which are currently used in electronic structure calculations of strongly correlated materials where the one-dimensional electron description breaks down is presented.
Abstract: We present a review of the basic ideas and techniques of the spectral density functional theory which are currently used in electronic structure calculations of strongly{correlated materials where the one{electron description breaks down. We illustrate the method with several examples where interactions play a dominant role: systems near metal{insulator transition, systems near volume collapse transition, and systems with local moments.

1,921 citations

Journal ArticleDOI
TL;DR: In this paper, a mass spectra for sodium clusters of $N$ atoms per cluster, produced in a supersonic expansion with argon carrier gas, is presented. The spectra show large peaks or steps at $N=8, 20, 40, 58, \mathrm{and} 92$.
Abstract: Mass spectra are presented for sodium clusters of $N$ atoms per cluster ($N=4\ensuremath{-}100$) produced in a supersonic expansion with argon carrier gas. The spectra show large peaks or steps at $N=8, 20, 40, 58, \mathrm{and} 92$. These can be understood in terms of a one-electron shell model in which independent delocalized atomic $3s$ electrons are bound in a spherically symmetric potential well.

1,909 citations


Network Information
Related Topics (5)
Band gap
86.8K papers, 2.2M citations
91% related
Raman spectroscopy
122.6K papers, 2.8M citations
88% related
Amorphous solid
117K papers, 2.2M citations
87% related
Excited state
102.2K papers, 2.2M citations
86% related
Electron
111.1K papers, 2.1M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023615
20221,342
20211,253
20201,298
20191,351
20181,324