scispace - formally typeset


Electronics cooling

About: Electronics cooling is a(n) research topic. Over the lifetime, 1135 publication(s) have been published within this topic receiving 17608 citation(s).

More filters
Journal ArticleDOI
Abstract: We have experimentally investigated the behaviour and heat transfer enhancement of a particular nanofluid, Al2O3 nanoparticle–water mixture, flowing inside a closed system that is destined for cooling of microprocessors or other electronic components. Experimental data, obtained for turbulent flow regime, have clearly shown that the inclusion of nanoparticles into distilled water has produced a considerable enhancement of the cooling block convective heat transfer coefficient. For a particular nanofluid with 6.8% particle volume concentration, heat transfer coefficient has been found to increase as much as 40% compared to that of the base fluid. It has also been found that an increase of particle concentration has produced a clear decrease of the heated component temperature. Experimental data have clearly shown that nanofluid with 36 nm particle diameter provides higher heat transfer coefficients than the ones of nanofluid with 47 nm particle size.

507 citations

Journal ArticleDOI
Abstract: An experimental study is conducted on the cooling of mobile electronic devices, such as personal digital assistants (PDAs) and wearable computers, using a heat storage unit (HSU) filled with the phase change material (PCM) of n-eicosane inside the device. The high latent heat of n-eicosane in the HSU absorbs the heat dissipation from the chips and can maintain the chip temperature below the allowable service temperature of 50 °C for 2 h of transient operations of the PDA. The heat dissipation of the chips inside a PDA and the orientation of the HSU are experimentally investigated in this paper. It was found that different orientation of the HSU inside the PDA could affect significantly the temperature distribution.

285 citations

Journal ArticleDOI
Abstract: Application of a novel PCM package for thermal management of portable electronic devices was investigated experimentally for effects of various parameters e.g. power input, orientation of package, and various melting/freezing times under cyclic steady conditions. Also, a two-dimensional numerical study was made and compared the experimental results. Results show that increased power inputs increase the melting rate, while orientation of the package to gravity has negligible effect on the thermal performance of the PCM package. The thermal resistance of the device and the power level applied to the PCM package are of critical importance for design of a passive thermal control system. Comparison with numerical results confirms that PCM-based design is an excellent candidate design for transient electronic cooling applications.

258 citations

Journal ArticleDOI
Abstract: Continued miniaturization and demand for high-end performance of electronic devices and appliances have led to dramatic increase in their heat flux generation. Consequently, conventional coolants and cooling approaches are increasingly falling short in meeting the ever-increasing cooling needs and challenges of those high heat generating electronic devices. This study provides a critical review of traditional and emerging cooling methods as well as coolants for electronics. In addition to summarizing traditional coolants, heat transfer properties and performances of potential new coolants such as nanofluids are also reviewed and analyzed. With superior thermal properties and numerous benefits nanofluids show great promises in fulfilling the cooling demands of high heat generating electronic devices. It is believed that applications of such novel coolants in emerging techniques like micro-channels and micro-heat pipes can revolutionize cooling technologies for electronics in the future.

238 citations

Journal ArticleDOI
Abstract: An experimental study was conducted on the cooling of portable hand-held electronic devices using n-eicosane as the phase change material (PCM) placed inside heat sinks with and without internal fins. The effects of the PCM, number of fins, orientation of the device, and the power level (ranging from 3 to 5 W), on the transient thermal performances were investigated under frequent, heavy and light usage conditions. The results indicated that PCM-based heat sinks with internal fins are viable options for cooling mobile devices but the effectiveness of the approach may require optimization with respect to the amount of PCM used, the number of fins, the power level of the heat source, and the usage mode of the device.

231 citations

Network Information
Related Topics (5)
Heat transfer

181.7K papers, 2.9M citations

83% related
Thermal conductivity

72.4K papers, 1.4M citations

78% related
Thermal conduction

60.6K papers, 1.1M citations

73% related
Laminar flow

56K papers, 1.2M citations

72% related

118K papers, 1.1M citations

72% related
No. of papers in the topic in previous years