scispace - formally typeset
Search or ask a question
Topic

Electronics cooling

About: Electronics cooling is a research topic. Over the lifetime, 1135 publications have been published within this topic receiving 17608 citations.


Papers
More filters
Proceedings ArticleDOI
12 Jun 2013
TL;DR: In this article, an investigation of the thermal behavior of space electronics devices using a Metal Matrix Composite Materials, using the Transmission Line-Matrix (TLM) method, is exposed and the results show that the development of MMCs for use in the Space Electronics Systems thermal design is quite promising considering the superior thermal characteristics.
Abstract: This Metal matrix composites (MMCs) are finding widespread use in the automotive and aerospace industry where strength, weight, thermal conductivity and thermal expansion are important. They are a composite of an element or alloy metal bound into a `matrix' structure, formed by a reaction synthesis process. The most common material combinations are aluminum (Al) and silicon carbide (SiC). Because of their composite nature, the properties of MMCs can be tailored to suit the particular application based on the contribution of individual materials. Current applications find them in automotive, aircraft brake rotors and space electronic packaging, where toughness and dimensional stability at temperature extremes are important. Several silicon-carbide particulate (p) reinforced aluminium (SiC/Al) and graphite/ aluminium (Gr/Al), electronic packages have been space-qualified and are now flown on communication satellites and Global Positioning System satellites. The most significant problem in the space power electronic module concept is the issue of adequate thermal management and consequent electrical performance. It is believed that a Metal Matrix Composite (MMC) heat spreader, with high thermal conductivity and low CTE has the potential to solve many of these thermal management issues. Applied to electronics cooling applications, the primary advantage of MMCs is the ability to tailor the CTE to match bonded and mating materials, such as copper, braze material, ceramic substrates, and silicon in one hand and in other hand as the electronics devices get smaller and smaller, self-heating becomes important and changes the electronic performance of device. This thermal-electronic coupling effect often results in thermal runaway and hence the breakdown of the device. In this paper, an investigation of the thermal behavior of space electronics devices using a Metal Matrix Composite Materials, using the Transmission -Line-Matrix (TLM) method, is exposed. The technique has been successful in modeling various heat diffusion and mass transport problems and has proven to be efficient in terms of stability, complex geometries and the incorporation of non linear material properties. The three dimensional results show that the method has a considerable potential in small devices thermal analysis and design. The results show that the development of MMCs for use in the Space Electronics Systems thermal design is quite promising considering the superior thermal characteristics.

3 citations

Journal ArticleDOI
TL;DR: In this paper , a dual-scale porous microchannel fabricated by plough-extrusion, wire electrical discharge machining, and ultrasonic machining is developed to meet the pressing needs.

3 citations

Proceedings ArticleDOI
01 May 2017
TL;DR: In this article, the authors numerically study the thermal performance of thin film liquid metal PCMs for the thermal management of flexible electronics using 1-D (axial direction) transient conduction along with the enthalpy method.
Abstract: Probably the most trending technology in electronics today is wearable and flexible electronics. Flexible electronics are electronic circuits fabricated on flexible surfaces and offer many advantages. Similar to conventional electronics, thermal management of flexible electronics is a formidable challenge. In addition to high heat fluxes from the miniaturization of electronics' components, thermal management of flexible electronics must be adapted to the flexible and stretchable nature of the technology. In this work, we numerically study the thermal performance of thin film liquid metal PCMs for the thermal management of flexible electronics. Using 1-D (axial direction) transient conduction along with the enthalpy method, the temperature distribution within the liquid metal PCM was investigated as a function of length, thermal properties, and unsteady heat load. The results showed the existence of three important regions within which there exists an optimal PCM configuration and operating condition. Because PCMs are most suited for transient heat load applications, which is the case for many electronics, we studied the effects of transient heat load's periodicity and duration on the thermal performance of the liquid metal PCMs. The results showed that with a base load resulting in a chip temperature just below the PCM's melting temperature, optimal periodic heat loads can be achieved to maintain the chip at an acceptable operating temperature.

3 citations

Journal ArticleDOI
TL;DR: In this article, the authors present an approach for the final published version of author's own work to be deposited in institutional repositories, which is the case for all the papers published in IEEE Transactions on Components and Packaging Technology.
Abstract: Originally published in IEEE Transactions on Components and Packaging Technology Vol. 26 No. 1. IEEE holds all copyright of this article. IEEE allows the final published version of author's own work to be deposited in institutional repositories.

3 citations

Proceedings ArticleDOI
06 Jul 2015
TL;DR: In this article, the problem of finding the maximum possible heat flux at the hot spot under the condition that the entire amount of the inputted heat is completely removed by the cooling fluid was solved using multi-objective constrained optimization and metamodeling for an array of micro pin-fins with circular, airfoil and symmetric convex cross sections.
Abstract: Most methods for designing electronics cooling schemes do not offer the information on what levels of heat fluxes are maximally possible to achieve with the given material, boundary and operating conditions. Here, we offer an answer to this inverse problem posed by the question below. Given a micro pin-fin array cooling with these constraints:- given maximum allowable temperature of the material,- given inlet cooling fluid temperature,- given total pressure loss (pumping power affordable), and- given overall thickness of the entire electronic component,find out the maximum possible average heat flux on the hot surface and find the maximum possible heat flux at the hot spot under the condition that the entire amount of the inputted heat is completely removed by the cooling fluid. This problem was solved using multi-objective constrained optimization and metamodeling for an array of micro pin-fins with circular, airfoil and symmetric convex cross sections that is removing all the heat inputted via uniform background heat flux and by a hot spot. The goal of this effort was to identify a cooling pin-fin shape and scheme that is able to push the maximum allowable heat flux as high as possible without the maximum temperature exceeding the specified limit for the given material. Conjugate heat transfer analysis was performed on each of the randomly created candidate configurations. Response surfaces based on Radial Basis Functions were coupled with a genetic algorithm to arrive at a Pareto frontier of best trade-off solutions. The Pareto optimized configuration indicates the maximum physically possible heat fluxes for specified material and constraints.Copyright © 2015 by ASME

3 citations


Network Information
Related Topics (5)
Heat transfer
181.7K papers, 2.9M citations
83% related
Thermal conductivity
72.4K papers, 1.4M citations
78% related
Thermal conduction
60.6K papers, 1.1M citations
73% related
Laminar flow
56K papers, 1.2M citations
72% related
Wafer
118K papers, 1.1M citations
72% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202323
202255
202172
202045
201952
201849