scispace - formally typeset
Search or ask a question
Topic

Electronics cooling

About: Electronics cooling is a research topic. Over the lifetime, 1135 publications have been published within this topic receiving 17608 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a three-dimensional, nonlinear, and dynamic finite element model coupled the thermal, electrical, and mechanical fields was established to investigate transient thermal stress of the integrated thermoelectric cooler (TEC) under the pulsed thermal load.

19 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present an approximate parameter estimation of the thermal management system required as well as different commercially available cooling solutions, and discuss the advantages and drawbacks of different designs ranging from simple passive heatsinks to complex evaporative systems.
Abstract: Cooling Methods for High-Power Electronic Systems Thermal management is a crucial step in the design of power electronic applications, especially railroad traction and automotive systems. Mass/size parameters, robustness and reliability of the power electronic system greatly depend on the cooling system type and performance. This paper presents an approximate parameter estimation of the thermal management system required as well as different commercially available cooling solutions. Advantages and drawbacks of different designs ranging from simple passive heatsinks to complex evaporative systems are discussed.

19 citations

Proceedings ArticleDOI
01 Jan 2005
TL;DR: In this paper, the authors used the Maisotsenko cycle (M-Cycle) to combine heat exchange and evaporative cooling in an effective indirect cooling process resulting in product flow temperature approaching incoming air dew point (not wet bulb) temperature.
Abstract: The Maisotsenko Cycle (M-Cycle) combines heat exchange and evaporative cooling [1–3] in an effective indirect evaporative cooling process resulting in product flow temperature approaching incoming air dew point (not wet bulb) temperature. Thermodynamically, the M-Cycle is based on air precooling before passing through the heat rejection water evaporating area, so the difference between the enthalpy of the air at its dew point temperature and the same air saturated at a higher temperature is used to provide cooling capacity to reject the heat, for example from the electronics. Today Delphi Corp and Coolerado Inc. are working on producing M-Cycle based heat- and mass exchangers for the Coolerado Coolers™ used in air conditioning. Other market applications, including electronics cooling, are being considered as well. A broad range of the cooling capacity (for example, from 10 W to 50 kW and more) could be obtained from the coolers utilizing M-Cycle. Due to superior thermodynamic process, M-Cycle based air coolers have a very high Energy Efficiency Ratio (EER). As per National Renewable Energy Laboratory (NREL), the average cooling capacity of Coolerado Coolers™ have EER more than 45; relatively to EER equal 13 for the best conventional air coolers. The M-cycle is much more efficient than any other heat rejection/recovery cycle, and the Coolerado Cooler™, as a single air cooling device has better specific characteristics (cooling capacity, air pressure drop, power consumption, etc.) than any existing coolers. Unlike traditional vapor compression, absorption, or thermoelectric refrigeration systems, where increase of air inlet temperature dramatically reduces cooling capacity, the M-Cycle based unit cooling capacity goes up with air inlet temperature rise. M-cycle based device similar to Coolerado Cooler™ can also cool any fluid to the temperature approaching the dew point temperature of incoming air without using compressor and refrigerant. That can revolutionize the electronics cooling market. The Coolerado Cooler was recognized by the prestigious R&D 100 Awards program as one of 2004’s most technologically significant products introduced to the world.Copyright © 2005 by ASME

19 citations

Journal ArticleDOI
TL;DR: Comparison between open-loop and closed-loop experiments for the same operating conditions shows that a 80 °C rise in the wall temperature is avoided with the gain-scheduling controller.

19 citations

Journal ArticleDOI
TL;DR: In this article, an experimental study has been performed to investigate the cooling performance of two different synthetic jets actuated with piezoelectric actuators cooling over a vertical surface.
Abstract: According to recent trends in the field of miniature electronics, the need for compact cooling solutions compatible with very thin profiles and small footprint areas is inevitable. Impinging synthetic jets are recognized as a promising technique for cooling miniature surfaces like laptops, tablets, smart phones and slim TV systems. Effect of jet to cooled surface spacing is crucial in cooling performance as well as predicting Nusselt number for such spacing. An experimental study has been performed to investigate the cooling performance of two different synthetic jets actuated with piezoelectric actuators cooling over a vertical surface. Results showed that a major degradation of heat transfer when jets are close to the surface is occurred. Slot synthetic jets showed a better performance in terms of coefficient of performance (COP) than semi-confined circular jets for small jet to surface spacing. Later, a correlation is proposed for predicting Nu number for a semi-confined circular synthetic jet accounti...

19 citations


Network Information
Related Topics (5)
Heat transfer
181.7K papers, 2.9M citations
83% related
Thermal conductivity
72.4K papers, 1.4M citations
78% related
Thermal conduction
60.6K papers, 1.1M citations
73% related
Laminar flow
56K papers, 1.2M citations
72% related
Wafer
118K papers, 1.1M citations
72% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202323
202255
202172
202045
201952
201849