scispace - formally typeset
Search or ask a question
Topic

Electronics cooling

About: Electronics cooling is a research topic. Over the lifetime, 1135 publications have been published within this topic receiving 17608 citations.


Papers
More filters
Proceedings ArticleDOI
Issam Mudawar1
23 May 2000
TL;DR: This paper explores the recent research developments in high-heat-flux thermal management and demonstrates that, while different cooling options can be tailored to the specific needs of individual applications, system considerations always play a paramount role in determining the most suitable cooling scheme.
Abstract: This paper explores the recent research developments in high-heat-flux thermal management. Cooling schemes such as pool boiling, detachable heat sinks, channel flow boiling, micro-channel and mini-channel heat sinks, jet-impingement, and sprays, are discussed and compared relative to heat dissipation potential, reliability, and packaging concerns. It is demonstrated that, while different cooling options can be tailored to the specific needs of individual applications, system considerations always play a paramount role in determining the most suitable cooling scheme. It is also shown that extensive fundamental electronic cooling knowledge has been amassed over the past two decades. Yet there is now a growing need for hardware innovations rather than perturbations to those fundamental studies. An example of these innovations is the cooling of military avionics, where research findings from the electronic cooling literature have made possible the development of a new generation of cooling hardware which promise order of magnitude increases in heat dissipation compared to today's cutting edge avionics cooling schemes.

133 citations

Journal ArticleDOI
TL;DR: In this article, phase change materials (PCMs) were used as thermal conductivity enhancers (TCEs) for passive cooling systems. But, the authors focused on the optimization of passive cooling system using extruded finned surfaces.

129 citations

Journal ArticleDOI
TL;DR: In this paper, an ultra thin heat sink for electronics, combining optimized impinging slot-jets, micro-channels and manifolds for efficient cooling, is presented, which is optimized for a 2 × 2 cm2 chip and provides a total thermal resistance of 0.087 cm2 K/W.

127 citations

Proceedings ArticleDOI
06 Mar 2011
TL;DR: In this article, an air-cooled inverter system for 120 °C ambient temperature is presented, where the operation of the signal electronics and the gate driver for power semiconductors with a junction temperature of 250 °C within the specified operating temperature range is ensured by appropriate placement and cooling methods, while taking the electrical requirements for limits on the wiring inductances and symmetry requirements into account.
Abstract: The degree of integration of power electronic converters in current hybrid electric vehicles can be increased by mitigation of special requirements of these converters, especially those regarding ambient air and cooling fluid temperature levels. Today, converters have their own cooling circuit or are placed far away from hot spots caused by the internal combustion engine and its peripheral components. In this paper, it is shown, how the use of SiC power semiconductors and active control electronics cooling employing a Peltier cooler can help to build an air-cooled inverter system for 120 °C ambient temperature. First, a detailed analysis shows, how the optimum junction of this high-temperature system can be calculated. Then, the operating temperature ranges of power semiconductors, thermal interface materials, capacitors, and control electronics are investigated, leading to a comprehensive analysis of mechanical concepts for the inverter system in order to show new ways to solve electrical and thermal tradeoffs. In particular, the operation of the signal electronics and the gate driver for power semiconductors with a junction temperature of 250 °C within the specified operating temperature range is ensured by appropriate placement and cooling methods, while taking the electrical requirements for limits on the wiring inductances and symmetry requirements into account. The analysis includes an accurate thermal model of the converter and an optimized active cooling of the signal electronics using a Peltier cooler. Finally, a hardware prototype with discrete power semiconductor devices and thus with a junction temperature limit of 175 °C driving high-speed electrical machines is shown to validate the theoretical considerations in a custom-designed high-temperature test environment.

127 citations

Journal ArticleDOI
TL;DR: In this paper, the lattice Boltzmann method is used to investigate one-dimensional, multi-length and -time scale transient heat conduction in crystalline semiconductor solids, in which sub-continuum effects are important.

127 citations


Network Information
Related Topics (5)
Heat transfer
181.7K papers, 2.9M citations
83% related
Thermal conductivity
72.4K papers, 1.4M citations
78% related
Thermal conduction
60.6K papers, 1.1M citations
73% related
Laminar flow
56K papers, 1.2M citations
72% related
Wafer
118K papers, 1.1M citations
72% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202323
202255
202172
202045
201952
201849