Topic
Electrospinning
About: Electrospinning is a research topic. Over the lifetime, 19973 publications have been published within this topic receiving 624602 citations.
Papers published on a yearly basis
Papers
More filters
TL;DR: In this article, a comprehensive review is presented on the researches and developments related to electrospun polymer nanofibers including processing, structure and property characterization, applications, and modeling and simulations.
Abstract: Electrospinning has been recognized as an efficient technique for the fabrication of polymer nanofibers. Various polymers have been successfully electrospun into ultrafine fibers in recent years mostly in solvent solution and some in melt form. Potential applications based on such fibers specifically their use as reinforcement in nanocomposite development have been realized. In this paper, a comprehensive review is presented on the researches and developments related to electrospun polymer nanofibers including processing, structure and property characterization, applications, and modeling and simulations. Information of those polymers together with their processing conditions for electrospinning of ultrafine fibers has been summarized in the paper. Other issues regarding the technology limitations, research challenges, and future trends are also discussed.
6,987 citations
TL;DR: An overview of electrospinning can be found in this article, where the authors focus on progress achieved in the last three years and highlight some potential applications associated with the remarkable features of electro-spun nanofibers.
Abstract: Electrospinning provides a simple and versatile method for generating ultrathin fibers from a rich variety of materials that include polymers, composites, and ceramics. This article presents an overview of this technique, with focus on progress achieved in the last three years. After a brief description of the setups for electrospinning, we choose to concentrate on the mechanisms and theoretical models that have been developed for electrospinning, as well as the ability to control the diameter, morphology, composition, secondary structure, and spatial alignment of electrospun nanofibers. In addition, we highlight some potential applications associated with the remarkable features of electrospun nanofibers. Our discussion is concluded with some personal perspectives on the future directions in which this wonderful technique could be pursued.
5,117 citations
TL;DR: This review presents an overview of the electrospinning technique with its promising advantages and potential applications, and focuses on varied applications of electrospun fibers in different fields.
Abstract: With the emergence of nanotechnology, researchers become more interested in studying the unique properties of nanoscale materials. Electrospinning, an electrostatic fiber fabrication technique has evinced more interest and attention in recent years due to its versatility and potential for applications in diverse fields. The notable applications include in tissue engineering, biosensors, filtration, wound dressings, drug delivery, and enzyme immobilization. The nanoscale fibers are generated by the application of strong electric field on polymer solution or melt. The non-wovens nanofibrous mats produced by this technique mimics extracellular matrix components much closely as compared to the conventional techniques. The sub-micron range spun fibers produced by this process, offer various advantages like high surface area to volume ratio, tunable porosity and the ability to manipulate nanofiber composition in order to get desired properties and function. Over the years, more than 200 polymers have been electropun for various applications and the number is still increasing gradually with time. With these in perspectives, we aim to present in this review, an overview of the electrospinning technique with its promising advantages and potential applications. We have discussed the electrospinning theory, spinnable polymers, parameters (solution and processing), which significantly affect the fiber morphology, solvent properties and melt electrospinning (alternative to solution electrospinning). Finally, we have focused on varied applications of electrospun fibers in different fields and concluded with the future prospects of this efficient technology.
3,932 citations
TL;DR: Electrospinning is a highly versatile method to process solutions or melts, mainly of polymers, into continuous fibers with diameters ranging from a few micrometers to a few nanometers, applicable to virtually every soluble or fusible polymer.
Abstract: Electrospinning is a highly versatile method to process solutions or melts, mainly of polymers, into continuous fibers with diameters ranging from a few micrometers to a few nanometers. This technique is applicable to virtually every soluble or fusible polymer. The polymers can be chemically modified and can also be tailored with additives ranging from simple carbon-black particles to complex species such as enzymes, viruses, and bacteria. Electrospinning appears to be straightforward, but is a rather intricate process that depends on a multitude of molecular, process, and technical parameters. The method provides access to entirely new materials, which may have complex chemical structures. Electrospinning is not only a focus of intense academic investigation; the technique is already being applied in many technological areas.
3,833 citations
TL;DR: More than 20 polymers, including polyethylene oxide, nylon, polyimide, DNA, polyaramid, and polyaniline, have been electrospun in this paper.
Abstract: Electrospinning uses electrical forces to produce polymer fibres with nanometre-scale diameters. Electrospinning occurs when the electrical forces at the surface of a polymer solution or melt overcome the surface tension and cause an electrically charged jet to be ejected. When the jet dries or solidifies, an electrically charged fibre remains. This charged fibre can be directed or accelerated by electrical forces and then collected in sheets or other useful geometrical forms. More than 20 polymers, including polyethylene oxide, nylon, polyimide, DNA, polyaramid, and polyaniline, have been electrospun in our laboratory. Most were spun from solution, although spinning from the melt in vacuum and air was also demonstrated. Electrospinning from polymer melts in a vacuum is advantageous because higher fields and higher temperatures can be used than in air.
3,431 citations