scispace - formally typeset
Search or ask a question
Topic

Electroweak interaction

About: Electroweak interaction is a research topic. Over the lifetime, 16333 publications have been published within this topic receiving 468927 citations. The topic is also known as: electroweak force.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the ingredients necessary to provide a combined description of B decays were analyzed by means of an Effective Field Theory (EFT) approach, based on the hypothesis of New Physics coupled predominantly to the third generation of left-handed quarks and leptons.
Abstract: Motivated by additional experimental hints of Lepton Flavour Universality violation in B decays, both in charged- and in neutral-current processes, we analyse the ingredients necessary to provide a combined description of these phenomena. By means of an Effective Field Theory (EFT) approach, based on the hypothesis of New Physics coupled predominantly to the third generation of left-handed quarks and leptons, we show how this is possible. We demonstrate, in particular, how to solve the problems posed by electroweak precision tests and direct searches with a rather natural choice of model parameters, within the context of a $U(2)_q \times U(2)_\ell$ flavour symmetry. We further exemplify the general EFT findings by means of simplified models with explicit mediators in the TeV range: coloured scalar or vector leptoquarks and colour-less vectors. Among these, the case of an $SU(2)_L$-singlet vector leptoquark emerges as a particularly simple and successful framework.

131 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed a systematic framework for the calculation of the cross sections for electroweak gauge-boson production at small and very small transverse momentum q_T, in which large logarithms of the scale ratio M_V/q_T are resummed to all orders.
Abstract: Using methods from effective field theory, we develop a novel, systematic framework for the calculation of the cross sections for electroweak gauge-boson production at small and very small transverse momentum q_T, in which large logarithms of the scale ratio M_V/q_T are resummed to all orders. These cross sections receive logarithmically enhanced corrections from two sources: the running of the hard matching coefficient and the collinear factorization anomaly. The anomaly leads to the dynamical generation of a non-perturbative scale q_* ~ M_V e^{-const/\alpha_s(M_V)}, which protects the processes from receiving large long-distance hadronic contributions. Expanding the cross sections in either \alpha_s or q_T generates strongly divergent series, which must be resummed. As a by-product, we obtain an explicit non-perturbative expression for the intercept of the cross sections at q_T=0, including the normalization and first-order \alpha_s(q_*) correction. We perform a detailed numerical comparison of our predictions with the available data on the transverse-momentum distribution in Z-boson production at the Tevatron and LHC.

131 citations

Journal ArticleDOI
TL;DR: In this article, the implications of extra dimensions of size R ~ 1/TeV on electroweak and flavor physics due to the presence of Kaluza-Klein excitations of the SM gauge-bosons were studied.
Abstract: We study the implications of extra dimensions of size R ~ 1/TeV on electroweak and flavor physics due to the presence of Kaluza-Klein excitations of the SM gauge-bosons. We consider several scenarios with the SM fermions either living in the bulk or being localized at different points of an extra dimension. Global fits to electroweak observables provide lower bounds on 1/R, which are generically in the 2-5 TeV range. We find, however, certain models where the fit to electroweak observables is better than in the SM, because of an improvement in the prediction to the weak charge QW. We also consider the case of softly-broken supersymmetric theories and we find new non-decoupling effects that put new constraints on 1/R. If quarks of different families live in different points of the extra dimension, we find that the Kaluza-Klein modes of the SM gluons generate (at tree level) dangerous flavor and CP-violating interactions. The lower bounds on 1/R can increase in this case up to 5000 TeV, disfavoring these scenarios in the context of TeV-strings.

131 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that only the "lepton-specific" (or "type X") 2HDM can explain the present muon (g-2) anomaly in the parameter region of large $\tan\beta$, a light CP-odd Higgs boson, and heavier CP-even and charged Higgs Bosons which are almost degenerate.
Abstract: Updating various theoretical and experimental constraints on the four different types of two-Higgs-doublet models (2HDMs), we find that only the "lepton-specific" (or "type X") 2HDM can explain the present muon (g-2) anomaly in the parameter region of large $\tan\beta$, a light CP-odd Higgs boson, and heavier CP-even and charged Higgs bosons which are almost degenerate. The severe constraints on the models come mainly from the consideration of vacuum stability and perturbativity, the electroweak precision data, $B$ physics observables like $b\to s \gamma$ as well as the 125 GeV Higgs boson properties measured at the LHC.

131 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyze the theoretical and phenomenological considerations for the electroweak phase transition and dark matter in an extension of the standard model with a complex scalar singlet (cxSM).
Abstract: We analyze the theoretical and phenomenological considerations for the electroweak phase transition and dark matter in an extension of the standard model with a complex scalar singlet (cxSM). In contrast with earlier studies, we use a renormalization group improved scalar potential and treat its thermal history in a gauge-invariant manner. We find that the parameter space consistent with a strong first-order electroweak phase transition (SFOEWPT) and present dark matter phenomenological constraints is significantly restricted compared to results of a conventional, gauge-noninvariant analysis. In the simplest variant of the cxSM, recent LUX data and a SFOEWPT require a dark matter mass close to half the mass of the standard model-like Higgs boson. We also comment on various caveats regarding the perturbative treatment of the phase transition dynamics.

131 citations


Network Information
Related Topics (5)
Quantum chromodynamics
47.1K papers, 1.2M citations
98% related
Quark
43.3K papers, 951K citations
98% related
Higgs boson
33.6K papers, 961.7K citations
98% related
Supersymmetry
29.7K papers, 1.1M citations
97% related
Neutrino
45.9K papers, 1M citations
95% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023368
2022916
2021548
2020527
2019574
2018660