scispace - formally typeset
Search or ask a question
Topic

Elliptic coordinate system

About: Elliptic coordinate system is a research topic. Over the lifetime, 670 publications have been published within this topic receiving 11135 citations. The topic is also known as: elliptical coordinate system & elliptic coordinates.


Papers
More filters
Book ChapterDOI
01 Jan 1958
TL;DR: In this introductory chapter, the basic notions which are essential to a geometrical picture of the significance of the differential calculus are reviewed.
Abstract: In this introductory chapter we briefly review the basic notions which are essential to a geometrical picture of the significance of the differential calculus; thus this chapter is not concerned explicitly with the calculus and is intended for revision and reference.

1 citations

Journal ArticleDOI
TL;DR: In this article, the equations of motion for the spatial circular restricted three-body problem in sidereal spherical coordinates system were established, and an initial value procedure that can be used to compute both the spherical and Cartesian sidereal coordinates and velocities was also developed.
Abstract: In this paper of the series, the equations of motion for the spatial circular restricted three-body problem in sidereal spherical coordinates system were established. Initial value procedure that can be used to compute both the spherical and Cartesian sidereal coordinates and velocities was also developed. The application of the procedure was illustrated by numerical example and graphical representations of the variations of the two sidereal coordinate systems.

1 citations

Book
18 Aug 2008
TL;DR: The Laplace transform analytic element method (LT-AEM) as discussed by the authors was used to derive analytic solutions to the modified Helmholtz equation and then back-transforms the results with a numerical inverse Laplace transformation algorithm.
Abstract: The Laplace transform analytic element method (LT-AEM), applies the traditionally steady-state analytic element method (AEM) to the Laplace-transformed diffusion equation (Furman and Neuman, 2003). This strategy preserves the accuracy and elegance of the AEM while extending the method to transient phenomena. The approach taken here utilizes eigenfunction expansion to derive analytic solutions to the modified Helmholtz equation, then back-transforms the LT-AEM results with a numerical inverse Laplace transform algorithm. The two-dimensional elements derived here include the point, circle, line segment, ellipse, and infinite line, corresponding to polar, elliptical and Cartesian coordinates. Each element is derived for the simplest useful case, an impulse response due to a confined, transient, single-aquifer source. The extension of these elements to include effects due to leaky, unconfined, multi-aquifer, wellbore storage, and inertia is shown for a few simple elements (point and line), with ready extension to other elements. General temporal behavior is achieved using convolution between these impulse and general time functions; convolution allows the spatial and temporal components of an element to be handled independently.

1 citations

15 May 2011
TL;DR: In this paper, the potential vorticity equation and expression in the isobaric and isoentropic coordinates are obtained via coordinate transformation with the two methods, starting from the three-dimensional vector motion equation, and then combining with the thermodynamic equation.
Abstract: The potential vorticity theory and diagnostic techniques are based on the potential vorticity equation and expression in the common meteorological coordinate systems. In this paper, the potential vorticity equation and expression in the isobaric and isoentropic coordinates are gotten via coordinate transformation with the two methods. First, starting from the three-dimensional vector motion equation, the potential vorticity equations and expressions are gotten by the combination of the three-dimensional vorticity equation, continuity equation, and thermodynamic equation. Second, the potential vorticity equations and expressions are directly gotten from the corresponding scalar motion equations in the isobaric and isoentropic coordinates. The results show that potential vorticity expression is different with one method from that with the other in the isobaric coordinate system, and it is the same as each other in the isoentropic coordinate system. It was found, based on further analysis of the physical nature of the coordinates, that the isobaric and isoentropic coordinates are essentially treated as a mathematical coordinate system with the first method despite the coordinate transformation made for the term of pressure gradient force in the vector motion equation. From the procedure for the second method it is clearly seen that the isobaric and isoentropic coordinate systems are the physical coordinate system under the assumption of static equilibrium, which are not simply used as a mathematical coordinate system. As far as the isobaric coordinate is concerned, only the potential vorticity equation obtained from the scalar motion equations is the strict potential vorticity equation. As for the isoentropic coordinate, owing to the potential temperature gradient perpendicular to the isoentropic plane, the potential vorticity equation and expression are the same regardless of the coordinate being viewed as the physical or the mathematical.

1 citations


Network Information
Related Topics (5)
Boundary value problem
145.3K papers, 2.7M citations
75% related
Differential equation
88K papers, 2M citations
73% related
Numerical analysis
52.2K papers, 1.2M citations
72% related
Field (physics)
95K papers, 1.5M citations
72% related
Partial differential equation
70.8K papers, 1.6M citations
71% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20237
202211
202111
202010
201913
201810