scispace - formally typeset
Search or ask a question
Topic

Encryption

About: Encryption is a research topic. Over the lifetime, 98330 publications have been published within this topic receiving 1451391 citations. The topic is also known as: encipherment.


Papers
More filters
Book
01 Jan 2007
TL;DR: This book discusses Private-Key (Symmetric) Cryptography, Number Theory and Cryptographic Hardness Assumptions, and the Random-Oracle Model in Detail.
Abstract: Preface I. Introduction and Classical Cryptography Introduction Cryptography and Modern Cryptography The Setting of Private-Key Encryption Historical Ciphers and Their Cryptanalysis Principles of Modern Cryptography Principle 1 - Formal Definitions Principle 2 - Precise Assumptions Principle 3 - Proofs of Security Provable Security and Real-World Security References and Additional Reading Exercises Perfectly Secret Encryption Definitions The One-Time Pad Limitations of Perfect Secrecy Shannon's Theorem References and Additional Reading Exercises II. Private-Key (Symmetric) Cryptography Private-Key Encryption Computational Security The Concrete Approach The Asymptotic Approach Defining Computationally Secure Encryption The Basic Definition of Security Semantic Security Constructing Secure Encryption Schemes Pseudorandom Generators and Stream Ciphers Proofs by Reduction A Secure Fixed-Length Encryption Scheme Stronger Security Notions Security for Multiple Encryptions Chosen-Plaintext Attacks and CPA-Security Constructing CPA-Secure Encryption Schemes Pseudorandom Functions and Block Ciphers CPA-Secure Encryption from Pseudorandom Functions Modes of Operation Stream-Cipher Modes of Operation Block-Cipher Modes of Operation Chosen-Ciphertext Attacks Defining CCA-Security Padding-Oracle Attacks References and Additional Reading Exercises Message Authentication Codes Message Integrity Secrecy vs. Integrity Encryption vs. Message Authentication Message Authentication Codes - Definitions Constructing Secure Message Authentication Codes A Fixed-Length MAC Domain Extension for MACs CBC-MAC The Basic Construction Proof of Security Authenticated Encryption Definitions Generic Constructions Secure Communication Sessions CCA-Secure Encryption Information-Theoretic MACs Constructing Information-Theoretic MACs Limitations on Information-Theoretic MACs References and Additional Reading Exercises Hash Functions and Applications Definitions Collision Resistance Weaker Notions of Security Domain Extension: The Merkle-Damgard Transform Message Authentication Using Hash Functions Hash-and-MAC HMAC Generic Attacks on Hash Functions Birthday Attacks for Finding Collisions Small-Space Birthday Attacks Time/Space Tradeoffs for Inverting Functions The Random-Oracle Model The Random-Oracle Model in Detail Is the Random-Oracle Methodology Sound? Additional Applications of Hash Functions Fingerprinting and Deduplication Merkle Trees Password Hashing Key Derivation Commitment Schemes References and Additional Reading Exercises Practical Constructions of Symmetric-Key Primitives Stream Ciphers Linear-Feedback Shift Registers Adding Nonlinearity Trivium RC4 Block Ciphers Substitution-Permutation Networks Feistel Networks DES - The Data Encryption Standard 3DES: Increasing the Key Length of a Block Cipher AES - The Advanced Encryption Standard Differential and Linear Cryptanalysis Hash Functions Hash Functions from Block Ciphers MD5 SHA-0, SHA-1, and SHA-2 SHA-3 (Keccak) References and Additional Reading Exercises Theoretical Constructions of Symmetric-Key Primitives One-Way Functions Definitions Candidate One-Way Functions Hard-Core Predicates From One-Way Functions to Pseudorandomness Hard-Core Predicates from One-Way Functions A Simple Case A More Involved Case The Full Proof Constructing Pseudorandom Generators Pseudorandom Generators with Minimal Expansion Increasing the Expansion Factor Constructing Pseudorandom Functions Constructing (Strong) Pseudorandom Permutations Assumptions for Private-Key Cryptography Computational Indistinguishability References and Additional Reading Exercises III. Public-Key (Asymmetric) Cryptography Number Theory and Cryptographic Hardness Assumptions Preliminaries and Basic Group Theory Primes and Divisibility Modular Arithmetic Groups The Group ZN Isomorphisms and the Chinese Remainder Theorem Primes, Factoring, and RSA Generating Random Primes Primality Testing The Factoring Assumption The RSA Assumption Relating the RSA and Factoring Assumptions Cryptographic Assumptions in Cyclic Groups Cyclic Groups and Generators The Discrete-Logarithm/Diffie-Hellman Assumptions Working in (Subgroups of) Zp Elliptic Curves Cryptographic Applications One-Way Functions and Permutations Constructing Collision-Resistant Hash Functions References and Additional Reading Exercises Algorithms for Factoring and Computing Discrete Logarithms Algorithms for Factoring Pollard's p - 1 Algorithm Pollard's Rho Algorithm The Quadratic Sieve Algorithm Algorithms for Computing Discrete Logarithms The Pohlig-Hellman Algorithm The Baby-Step/Giant-Step Algorithm Discrete Logarithms from Collisions The Index Calculus Algorithm Recommended Key Lengths References and Additional Reading Exercises Key Management and the Public-Key Revolution Key Distribution and Key Management A Partial Solution: Key-Distribution Centers Key Exchange and the Diffie-Hellman Protocol The Public-Key Revolution References and Additional Reading Exercises Public-Key Encryption Public-Key Encryption - An Overview Definitions Security against Chosen-Plaintext Attacks Multiple Encryptions Security against Chosen-Ciphertext Attacks Hybrid Encryption and the KEM/DEM Paradigm CPA-Security CCA-Security CDH/DDH-Based Encryption El Gamal Encryption DDH-Based Key Encapsulation A CDH-Based KEM in the Random-Oracle Model Chosen-Ciphertext Security and DHIES/ECIES RSA Encryption Plain RSA Padded RSA and PKCS #1 v1.5 CPA-Secure Encryption without Random Oracles OAEP and RSA PKCS #1 v A CCA-Secure KEM in the Random-Oracle Model RSA Implementation Issues and Pitfalls References and Additional Reading Exercises Digital Signature Schemes Digital Signatures - An Overview Definitions The Hash-and-Sign Paradigm RSA Signatures Plain RSA RSA-FDH and PKCS #1 v Signatures from the Discrete-Logarithm Problem The Schnorr Signature Scheme DSA and ECDSA Signatures from Hash Functions Lamport's Signature Scheme Chain-Based Signatures Tree-Based Signatures Certificates and Public-Key Infrastructures Putting It All Together - SSL/TLS Signcryption References and Additional Reading Exercises Advanced Topics in Public-Key Encryption Public-Key Encryption from Trapdoor Permutations Trapdoor Permutations Public-Key Encryption from Trapdoor Permutations The Paillier Encryption Scheme The Structure of ZN2 The Paillier Encryption Scheme Homomorphic Encryption Secret Sharing and Threshold Encryption Secret Sharing Verifiable Secret Sharing Threshold Encryption and Electronic Voting The Goldwasser-Micali Encryption Scheme Quadratic Residues Modulo a Prime Quadratic Residues Modulo a Composite The Quadratic Residuosity Assumption The Goldwasser-Micali Encryption Scheme The Rabin Encryption Scheme Computing Modular Square Roots A Trapdoor Permutation Based on Factoring The Rabin Encryption Scheme References and Additional Reading Exercises Index of Common Notation Appendix A: Mathematical Background Identities and Inequalities Asymptotic Notation Basic Probability The "Birthday" Problem Finite Fields Appendix B: Basic Algorithmic Number Theory Integer Arithmetic Basic Operations The Euclidean and Extended Euclidean Algorithms Modular Arithmetic Basic Operations Computing Modular Inverses Modular Exponentiation Montgomery Multiplication Choosing a Uniform Group Element Finding a Generator of a Cyclic Group Group-Theoretic Background Efficient Algorithms References and Additional Reading Exercises References Index

2,269 citations

Book ChapterDOI
Brent Waters1
22 May 2005
TL;DR: This work first presents their IBE construction and reduces the security of the scheme to the decisional Bilinear Diffie-Hellman (BDH) problem, and shows that their techniques can be used to build a new signature scheme that is secure under the computational Diffie -Hellman assumption without random oracles.
Abstract: We present the first efficient Identity-Based Encryption (IBE) scheme that is fully secure without random oracles We first present our IBE construction and reduce the security of our scheme to the decisional Bilinear Diffie-Hellman (BDH) problem Additionally, we show that our techniques can be used to build a new signature scheme that is secure under the computational Diffie-Hellman assumption without random oracles

2,188 citations

BookDOI
01 Jan 2002
TL;DR: This volume is the authoritative guide to the Rijndael algorithm and AES and professionals, researchers, and students active or interested in data encryption will find it a valuable source of information and reference.
Abstract: From the Publisher: In October 2000, the US National Institute of Standards and Technology selected the block cipher Rijndael as the Advanced Encryption Standard (AES). AES is expected to gradually replace the present Data Encryption Standard (DES) as the most widely applied data encryption technology.|This book by the designers of the block cipher presents Rijndael from scratch. The underlying mathematics and the wide trail strategy as the basic design idea are explained in detail and the basics of differential and linear cryptanalysis are reworked. Subsequent chapters review all known attacks against the Rijndael structure and deal with implementation and optimization issues. Finally, other ciphers related to Rijndael are presented.|This volume is THE authoritative guide to the Rijndael algorithm and AES. Professionals, researchers, and students active or interested in data encryption will find it a valuable source of information and reference.

2,140 citations

Proceedings Article
01 Jan 1981
TL;DR: A design principle is presented that helps guide placement of functions among the modules of a distributed computer system and suggests that functions placed at low levels of a system may be redundant or of little value when compared with the cost of providing them at that low level.
Abstract: This paper presents a design principle that helps guide placement of functions among the modules of a distributed computer system. The principle, called the end-to-end argument, suggests that functions placed at low levels of a system may be redundant or of little value when compared with the cost of providing them at that low level. Examples discussed in the paper include bit error recovery, security using encryption, duplicate message suppression, recovery from system crashes, and delivery acknowledgement. Low level mechanisms to support these functions are justified only as performance enhancements.

2,091 citations

Journal ArticleDOI
TL;DR: A structured view of research on information-flow security is given, particularly focusing on work that uses static program analysis to enforce information- flow policies, and some important open challenges are identified.
Abstract: Current standard security practices do not provide substantial assurance that the end-to-end behavior of a computing system satisfies important security policies such as confidentiality. An end-to-end confidentiality policy might assert that secret input data cannot be inferred by an attacker through the attacker's observations of system output; this policy regulates information flow. Conventional security mechanisms such as access control and encryption do not directly address the enforcement of information-flow policies. Previously, a promising new approach has been developed: the use of programming-language techniques for specifying and enforcing information-flow policies. In this paper, we survey the past three decades of research on information-flow security, particularly focusing on work that uses static program analysis to enforce information-flow policies. We give a structured view of work in the area and identify some important open challenges.

2,058 citations


Network Information
Related Topics (5)
Network packet
159.7K papers, 2.2M citations
89% related
Server
79.5K papers, 1.4M citations
89% related
Wireless sensor network
142K papers, 2.4M citations
89% related
Wireless ad hoc network
49K papers, 1.1M citations
87% related
Key distribution in wireless sensor networks
59.2K papers, 1.2M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20248
20233,755
20227,996
20214,840
20206,848
20198,479