scispace - formally typeset
Search or ask a question
Topic

Endocannabinoid system

About: Endocannabinoid system is a research topic. Over the lifetime, 5099 publications have been published within this topic receiving 326230 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Upon intravenous administration to mice, 2-Ara-Gl caused the typical tetrad of effects produced by THC: antinociception, immobility, reduction of spontaneous activity, and lowering of the rectal temperature.

2,764 citations

Journal ArticleDOI
TL;DR: A comprehensive overview on the current state of knowledge of the endocannabinoid system as a target of pharmacotherapy is provided.
Abstract: The recent identification of cannabinoid receptors and their endogenous lipid ligands has triggered an exponential growth of studies exploring the endocannabinoid system and its regulatory functions in health and disease. Such studies have been greatly facilitated by the introduction of selective cannabinoid receptor antagonists and inhibitors of endocannabinoid metabolism and transport, as well as mice deficient in cannabinoid receptors or the endocannabinoid-degrading enzyme fatty acid amidohydrolase. In the past decade, the endocannabinoid system has been implicated in a growing number of physiological functions, both in the central and peripheral nervous systems and in peripheral organs. More importantly, modulating the activity of the endocannabinoid system turned out to hold therapeutic promise in a wide range of disparate diseases and pathological conditions, ranging from mood and anxiety disorders, movement disorders such as Parkinson9s and Huntington9s disease, neuropathic pain, multiple sclerosis and spinal cord injury, to cancer, atherosclerosis, myocardial infarction, stroke, hypertension, glaucoma, obesity/metabolic syndrome, and osteoporosis, to name just a few. An impediment to the development of cannabinoid medications has been the socially unacceptable psychoactive properties of plant-derived or synthetic agonists, mediated by CB 1 receptors. However, this problem does not arise when the therapeutic aim is achieved by treatment with a CB 1 receptor antagonist, such as in obesity, and may also be absent when the action of endocannabinoids is enhanced indirectly through blocking their metabolism or transport. The use of selective CB 2 receptor agonists, which lack psychoactive properties, could represent another promising avenue for certain conditions. The abuse potential of plant-derived cannabinoids may also be limited through the use of preparations with controlled composition and the careful selection of dose and route of administration. The growing number of preclinical studies and clinical trials with compounds that modulate the endocannabinoid system will probably result in novel therapeutic approaches in a number of diseases for which current treatments do not fully address the patients9 need. Here, we provide a comprehensive overview on the current state of knowledge of the endocannabinoid system as a target of pharmacotherapy.

1,857 citations

Journal ArticleDOI
TL;DR: The endocannabinoids are a family of lipid messengers that engage the cell surface receptors that are targeted by Δ9-tetrahydrocannabinol, the active principle in marijuana (Cannabis).
Abstract: The endocannabinoids are a family of lipid messengers that engage the cell surface receptors that are targeted by Δ9-tetrahydrocannabinol, the active principle in marijuana (Cannabis). They are made on demand through cleavage of membrane precursors and are involved in various short-range signalling processes. In the brain, they combine with CB1 cannabinoid receptors on axon terminals to regulate ion channel activity and neurotransmitter release. Their ability to modulate synaptic efficacy has a wide range of functional consequences and provides unique therapeutic possibilities.

1,843 citations

Journal ArticleDOI
29 Mar 2001-Nature
TL;DR: The transient suppression of GABA-mediated transmission that follows depolarization of hippocampal pyramidal neurons is mediated by retrograde signalling through release of endogenous cannabinoids, indicating that the function of endogenous cannabinoid released by depolarized hippocampal neurons might be to downregulate GABA release.
Abstract: Marijuana affects brain function primarily by activating the G-protein-coupled cannabinoid receptor-1 (CB1)1,2,3, which is expressed throughout the brain at high levels4. Two endogenous lipids, anandamide and 2-arachidonylglycerol (2-AG), have been identified as CB1 ligands5,6. Depolarized hippocampal neurons rapidly release both anandamide and 2-AG in a Ca2+-dependent manner6,7,8. In the hippocampus, CB1 is expressed mainly by GABA (γ-aminobutyric acid)-mediated inhibitory interneurons, where CB1 clusters on the axon terminal9,10,11. A synthetic CB1 agonist depresses GABA release from hippocampal slices10,12. These findings indicate that the function of endogenous cannabinoids released by depolarized hippocampal neurons might be to downregulate GABA release. Here we show that the transient suppression of GABA-mediated transmission that follows depolarization of hippocampal pyramidal neurons13 is mediated by retrograde signalling through release of endogenous cannabinoids. Signalling by the endocannabinoid system thus represents a mechanism by which neurons can communicate backwards across synapses to modulate their inputs.

1,547 citations

Journal ArticleDOI
12 Apr 2001-Nature
TL;DR: It is shown that following temporary food restriction, CB1 receptor knockout mice eat less than their wild-type littermates, and the CB1 antagonist SR141716A reduces food intake in wild- type but not knockout mice, which indicates that endocannabinoids in the hypothalamus may tonically activate CB1 receptors to maintain food intake and form part of the neural circuitry regulated by leptin.
Abstract: Leptin is the primary signal through which the hypothalamus senses nutritional state and modulates food intake and energy balance1. Leptin reduces food intake by upregulating anorexigenic (appetite-reducing) neuropeptides, such as α-melanocyte-stimulating hormone2,3, and downregulating orexigenic (appetite-stimulating) factors, primarily neuropeptide Y4. Genetic defects in anorexigenic signalling, such as mutations in the melanocortin-4 (ref. 5) or leptin receptors6, cause obesity. However, alternative orexigenic pathways maintain food intake in mice deficient in neuropeptide Y7. CB1 cannabinoid receptors8 and the endocannabinoids anandamide and 2-arachidonoyl glycerol are present in the hypothalamus9, and marijuana10 and anandamide11,12 stimulate food intake. Here we show that following temporary food restriction, CB1 receptor knockout mice eat less than their wild-type littermates, and the CB1 antagonist SR141716A reduces food intake in wild-type but not knockout mice. Furthermore, defective leptin signalling is associated with elevated hypothalamic, but not cerebellar, levels of endocannabinoids in obese db/db and ob/ob mice and Zucker rats. Acute leptin treatment of normal rats and ob/ob mice reduces anandamide and 2-arachidonoyl glycerol in the hypothalamus. These findings indicate that endocannabinoids in the hypothalamus may tonically activate CB1 receptors to maintain food intake and form part of the neural circuitry regulated by leptin.

1,540 citations


Network Information
Related Topics (5)
Dopamine
45.7K papers, 2.2M citations
90% related
Receptor
159.3K papers, 8.2M citations
88% related
Hippocampus
34.9K papers, 1.9M citations
86% related
Prefrontal cortex
24K papers, 1.9M citations
85% related
MAPK/ERK pathway
43.7K papers, 2M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023339
2022662
2021283
2020262
2019224
2018220