scispace - formally typeset
Search or ask a question

Showing papers on "Endosperm published in 2001"


Journal ArticleDOI
TL;DR: Results strongly suggest that BEIIb plays a specific role in the transfer of short chains, which might then be extended by SS to form the A and B(1) chains of amylopectin cluster in rice endosperm.
Abstract: Biochemical analysis of amylose-extender (ae) mutant of rice (Oryza sativa) revealed that the mutation in the gene for starch-branching enzyme IIb (BEIIb) specifically altered the structure of amylopectin in the endosperm by reducing short chains with degree of polymerization of 17 or less, with the greatest decrease in chains with degree of polymerization of 8 to 12 The extent of such change was correlated with the gelatinization properties of the starch granules, as determined in terms of solubility in urea solution The ae mutation caused a dramatic reduction in the activity of BEIIb The activity of soluble starch synthase I (SSI) in the ae mutant was significantly lower than in the wild type, suggesting that the mutation had a pleiotropic effect on the SSI activity In contrast, the activities of BEI, BEIIa, ADP-Glc pyrophosphorylase, isoamylase, isoamylase, pullulanase, and Suc synthase were not affected by the mutation Therefore, it is stressed that the function of BEIIb cannot be complemented by BEIIa and BEI These results strongly suggest that BEIIb plays a specific role in the transfer of short chains, which might then be extended by SS to form the A and B1 chains of amylopectin cluster in rice endosperm

533 citations


Journal ArticleDOI
01 Jun 2001
TL;DR: Key points in cell cycle control and control of the MT (microtubular) cytoskeletal apparatus central to endosperm development are discussed and specification of cell fates appears to occur via positional signaling.
Abstract: ▪ Abstract The endosperm develops from the central cell of the megagametophyte after introduction of the second male gamete into the diploid central cell. Of the three forms of endosperm in angiosperms, the nuclear type is prevalent in economically important species, including the cereals. Landmarks in nuclear endosperm development are the coenocytic, cellularization, differentiation, and maturation stages. The differentiated endosperm contains four major cell types: starchy endosperm, aleurone, transfer cells, and the cells of the embryo surrounding region. Recent research has demonstrated that the first two phases of endosperm occur via mechanisms that are conserved among all groups of angiosperms, involving directed nuclear migration during the coenocytic stage and anticlinal cell wall deposition by cytoplasmic phragmoplasts formed in interzones between radial microtubular systems emanating from nuclear membranes. Complete cellularization of the endosperm coenocyte is achieved through centripetal growt...

359 citations


Journal ArticleDOI
TL;DR: The full spectrum of wheat-endosperm proteins has been exhibited in proteome studies involving the two-dimensional fractionation of the polypeptides (after disulfide-bond rupture), followed by dissection of the individual components for identification.
Abstract: Of all the cereal grains, wheat is unique because wheat flour alone has the ability to form a dough that exhibits the rheological properties required for the production of leavened bread and for the wider diversity of foods that have been developed to take advantage of these attributes. The unique properties of the wheat grain reside primarily in the gluten-forming storage proteins of its endosperm. It is these dough-forming properties that are responsible for wheat being the most important source of protein in the human diet. The bread and durum wheats are polyploid species containing three (AABBDD) and two (AABB) related genomes, respectively. The genetic constitution of wheat is important because all quality traits result from the expression of genes and their interaction with the environment. The full spectrum of wheat-endosperm proteins has been exhibited in proteome studies involving the two-dimensional fractionation of the polypeptides (after disulfide-bond rupture), followed by dissection of the individual components for identification. This display (Fig. 1) shows that there are at least 1,300 polypeptides, over 300 of which have been identified by N-terminal amino

353 citations


Journal ArticleDOI
TL;DR: Monitoring mitotic activity in livingsyncytial endosperm showed that the syncytium was organized into three domains in which nuclei divide simultaneously with a specific time course, which suggests interactions between developmental mechanisms and the regulation of the cell cycle.
Abstract: During early seed development, nuclear divisions in the endosperm are not followed by cell division, leading to the development of a syncytium. The simple organization of the Arabidopsis endosperm provides a model in which to study the regulation of the cell cycle in relation to development. To monitor nuclear divisions, we constructed a HISTONE 2B::YELLOW FLUORESCENT PROTEIN gene fusion (H2B::YFP). To validate its use as a vital marker for chromatin in plants, H2B::YFP was expressed constitutively in Arabidopsis. This enabled the observation of mitoses in living root meristems. H2B::YFP was expressed specifically in Arabidopsis syncytial endosperm by using GAL4 transactivation. Monitoring mitotic activity in living syncytial endosperm showed that the syncytium was organized into three domains in which nuclei divide simultaneously with a specific time course. Each mitotic domain has a distinct spatiotemporal pattern of mitotic CYCLIN B1;1 accumulation. The polar spatial organization of the three mitotic domains suggests interactions between developmental mechanisms and the regulation of the cell cycle.

350 citations


Journal ArticleDOI
TL;DR: This study showed that zeins are by far the most highly expressed genes in the endosperm, but there is an inverse relationship between the number of zein genes and the relative amount of specific mRNAs, and found differences in the temporal and spatial expression of the α-, γ-, and δ-zein gene families.
Abstract: We analyzed cDNA libraries from developing endosperm of the B73 maize inbred line to evaluate the expression of storage protein genes. This study showed that zeins are by far the most highly expressed genes in the endosperm, but we found an inverse relationship between the number of zein genes and the relative amount of specific mRNAs. Although alpha-zeins are encoded by large multigene families, only a few of these genes are transcribed at high or detectable levels. In contrast, relatively small gene families encode the gamma- and delta-zeins, and members of these gene families, especially the gamma-zeins, are highly expressed. Knowledge of expressed storage protein genes allowed the development of DNA and antibody probes that distinguish between closely related gene family members. Using in situ hybridization, we found differences in the temporal and spatial expression of the alpha-, gamma-, and delta-zein gene families, which provides evidence that gamma-zeins are synthesized throughout the endosperm before alpha- and delta-zeins. This observation is consistent with earlier studies that suggested that gamma-zeins play an important role in prolamin protein body assembly. Analysis of endosperm cDNAs also revealed several previously unidentified proteins, including a 50-kD gamma-zein, an 18-kD alpha-globulin, and a legumin-related protein. Immunolocalization of the 50-kD gamma-zein showed this protein to be located at the surface of prolamin-containing protein bodies, similar to other gamma-zeins. The 18-kD alpha-globulin, however, is deposited in novel, vacuole-like organelles that were not described previously in maize endosperm.

282 citations


Journal ArticleDOI
TL;DR: The results indicate that seed dormancy is secured via at least two sequential developmental processes: embryo growth arrest, which is regulated by cell division and embryo dormancy, and ectopic cell division occurs in seedlings.
Abstract: The continuous growth of the plant embryo is interrupted during the seed maturation processes which results in a dormant seed. The embryo continues development after germination when it grows into a seedling. The embryo growth phase starts after morphogenesis and ends when the embryo fills the seed sac. Very little is known about the processes regulating this phase. We describe mutants that affect embryo growth in two sequential developmental stages. Firstly, embryo growth arrest is regulated by the FUS3/LEC type genes, as mutations in these genes cause a continuation of growth in immature embryos. Secondly, a later stage of embryo dormancy is regulated by ABI3 and abscisic acid; abi3 and aba1 mutants exhibit premature germination only after embryos mature. Mutations affecting both developmental stages result in an additive phenotype and double mutants are highly viviparous. Embryo growth arrest is regulated by cell division activities in both the embryo and the endosperm, which are gradually switched off at the mature embryo stage. In the fus3/lec mutants, however, cell division in both the embryo and endosperm is not arrested, but rather is prolonged throughout seed maturation. Furthermore ectopic cell division occurs in seedlings. Our results indicate that seed dormancy is secured via at least two sequential developmental processes: embryo growth arrest, which is regulated by cell division and embryo dormancy.

273 citations


Journal ArticleDOI
TL;DR: It is suggested that the putative protease ALE1 affects the formation of cuticle on embryos and juvenile plants and that an appropriate cuticle is required for separation of the endosperm from the embryo and for prevention of organ fusion.
Abstract: The surfaces of land plants are covered with a cuticle that is essential for retention of water. Epidermal surfaces of Arabidopsis thaliana embryos and juvenile plants that were homozygous for abnormal leaf shape1 (ale1) mutations were defective, resulting in excessive water loss and organ fusion in young plants. In ale1 embryos, the cuticle was rudimentary and remnants of the endosperm remained attached to developing embryos. Juvenile plants had a similar abnormal cuticle. The ALE1 gene was isolated using a transposon-tagged allele ale1-1. The predicted ALE1 amino acid sequence was homologous to those of subtilisin-like serine proteases. The ALE1 gene was found to be expressed within certain endosperm cells adjacent to the embryo and within the young embryo. Expression was not detected after germination. Our results suggest that the putative protease ALE1 affects the formation of cuticle on embryos and juvenile plants and that an appropriate cuticle is required for separation of the endosperm from the embryo and for prevention of organ fusion.

233 citations


Journal ArticleDOI
TL;DR: FIS genes are targets of imprinting, and the genes they control in developing endosperm are also regulated by DNA methylation and chromatin remodeling genes, which define some exciting future areas of research in seed development.
Abstract: Seed development requires coordinated expression of embryo and endosperm and has contributions from both sporophytic and male and female gametophytic genes. Genetic and molecular analyses in recent years have started to illuminate how products of these multiple genes interact to initiate seed development. Imprinting or differential expression of paternal and maternal genes seems to be involved in controlling seed development, presumably by controlling gene expression in developing endosperm. Epigenetic processes such as chromatin remodeling and DNA methylation affect imprinting of key seed-specific genes; however, the identity of many of these genes remains unknown. The discovery of FIS genes has illuminated control of autonomous endosperm development, a component of apomixis, which is an important developmental and agronomic trait. FIS genes are targets of imprinting, and the genes they control in developing endosperm are also regulated by DNA methylation and chromatin remodeling genes. These results define some exciting future areas of research in seed development.

209 citations


Journal ArticleDOI
TL;DR: The results indicate that remarkable changes in the content and redox balance of these metabolites occur in both the embryo and endosperm; even if with different patterns for the two redox pairs.
Abstract: The ascorbate and glutathione systems have been studied during the first stages of germination in orthodox seeds of the gymnosperm Pinus pinea L. (pine). The results indicate that remarkable changes in the content and redox balance of these metabolites occur in both the embryo and endosperm; even if with different patterns for the two redox pairs. Dry seeds are devoid of the ascorbate reduced form (ASC) and contain only dehydroascorbic acid (DHA). By contrast, glutathione is present both in the reduced (GSH) and in the oxidized (GSSG) forms. During imbibition the increase in ASC seems to be mainly caused by the reactivation of its biosynthesis. On the other hand, the GSH rise occurring during the first 24 h seems to be largely due to GSSG reduction, even if GSH biosynthesis is still active in the seeds. The enzymes of the ascorbate--glutathione cycle also change during germination, but in different ways. ASC peroxidase (EC 1.11.1.11) and glutathione reductase (EC 1.6.4.2) activities progressively rise both in the embryo and in endosperm. These changes are probably required for counteracting production of reactive oxygen species caused by recovery of oxidative metabolism. The two enzymes involved in the ascorbate recycling, ascorbate free radical (AFR) reductase (EC 1.6.5.4) and DHA reductase (EC 1.8.5.1), show different behaviour: the DHA reductase activity decreases, while that of AFR reductase remains unchanged. The relationship between ascorbate and glutathione metabolism and their relevance in the germination of orthodox seeds are also discussed.

208 citations


Journal ArticleDOI
TL;DR: The structure of the mature buckwheat achene and groat is discussed in relation to milling fractions and nutritional composition and Buckwheat bran also is a rich source of TDF and soluble dietary fibre (SDF), particularly bran with hull fragments.

200 citations


Journal ArticleDOI
TL;DR: Results indicate that an extra-plastidial AGPase is important in ADP-Glc synthesis in graminaceous endosperms, but not in other starch-storing organs.
Abstract: The occurrence of an extra-plastidial isoform of ADP-glucose (Glc) pyrophosphorylase (AGPase) among starch-storing organs was investigated in two ways. First, the possibility that an extra-plastidial isoform arose during the domestication of cereals was studied by comparing the intracellular distribution of enzyme activity and protein in developing endosperm of noncultivated Hordeum species with that previously reported for cultivated barley (Hordeum vulgare). As in cultivated barley, the AGPase of H. vulgare subsp. spontaneum and Hordeum murinum endosperm is accounted for by a major extra-plastidial and a minor plastidial isoform. Second, the ratio of ADP-Glc to UDP-Glc was used as an indication of the intracellular location of the AGPase activity in a wide range of starch-synthesizing organs. The ratio is expected to be high in organs in which UDP-Glc and ADP-Glc are synthesized primarily in the cytosol, because the reactions catalyzed by AGPase and UDP-Glc pyrophosphorylase will be coupled and close to equilibrium. This study revealed that ADP-Glc contents and the ratio of ADP-Glc to UDP-Glc were higher in developing graminaceous endosperms than in any other starch-storing organs. Taken as a whole the results indicate that an extra-plastidial AGPase is important in ADP-Glc synthesis in graminaceous endosperms, but not in other starch-storing organs.

Journal ArticleDOI
TL;DR: It is reported here that reduction of the epsilon subgroup of Arabidopsis 14-3-3 proteins by antisense technology resulted in a 2- to 4-fold increase in leaf starch accumulation, indicating an unaltered starch-degradation pathway and suggesting a role for 14- 3- 3 proteins in regulation of starch synthesis.
Abstract: In higher plants the production of starch is orchestrated by chloroplast-localized biosynthetic enzymes, namely starch synthases, ADP-glucose pyrophosphorylase, and starch branching and debranching enzymes. Diurnal regulation of these enzymes, as well as starch-degrading enzymes, influences both the levels and composition of starch, and is dependent in some instances upon phosphorylation-linked regulation. The phosphoserine/threonine-binding 14-3-3 proteins participate in environmentally responsive phosphorylation-related regulatory functions in plants, and as such are potentially involved in starch regulation. We report here that reduction of the epsilon subgroup of Arabidopsis 14-3-3 proteins by antisense technology resulted in a 2- to 4-fold increase in leaf starch accumulation. Dark-governed starch breakdown was unaffected in these "antisense plants," indicating an unaltered starch-degradation pathway and suggesting a role for 14-3-3 proteins in regulation of starch synthesis. Absorption spectra and gelatinization properties indicate that the starch from the antisense plants has an altered branched glucan composition. Biochemical characterization of protease-treated starch granules from both Arabidopsis leaves and maize endosperm showed that 14-3-3 proteins are internal intrinsic granule proteins. These data suggest a direct role for 14-3-3 proteins in starch accumulation. The starch synthase III family is a possible target for 14-3-3 protein regulation because, uniquely among plastid-localized starch metabolic enzymes, all members of the family contain the conserved 14-3-3 protein phosphoserine/threonine-binding consensus motif. This possibility is strengthened by immunocapture using antibodies to DU1, a maize starch synthase III family member, and direct interaction with biotinylated 14-3-3 protein, both of which demonstrated an association between 14-3-3 proteins and DU1 or DU1-like proteins.

Journal ArticleDOI
TL;DR: The characterization of the promoter of a wheat (Triticum aestivum) cv.
Abstract: The characterization of the promoter of a wheat (Triticum aestivum) cv. Cheyenne high molecular weight glutenin subunit (HMW subunit) gene, Glu-1D-1 is reported. The nucleotide sequence of the promoter from position -1191 to -650 with respect to the transcription start site was determined, to add to that already determined. Analysis of this region of the promoter revealed the presence of an additional copy of part of the primary enhancer sequence and sequences related to regulatory elements present in other wheat seed protein genes. A chimaeric gene was constructed comprising the 5' flanking region of the Glu-1D-1 gene from position -1191 to +58, the coding region of the UID:A (Gus) gene, and the nopaline synthase (Nos) gene terminator. This chimaeric gene was introduced into wheat (Triticum durum cv. Ofanto) by particle bombardment of inflorescence explants. Two independent transgenic lines were produced, and both showed expression of the Gus gene specifically in the endosperm during mid-development (first detected 10-12 d after anthesis). Histochemical analysis of homozygous T(2) seed confirmed this pattern of expression, and showed that expression was initiated first in the central lobes of the starchy endosperm, and then spread throughout the endosperm tissue, while no expression was detected in the aleurone layer. Native HMW subunit protein was detectable by Western analysis 12-14 d after anthesis, consistent with concurrent onset of activity of the native and introduced HMW subunit gene promoters.

Journal ArticleDOI
TL;DR: Grain sink strength, determined by both cell numbers, SS and AGPase activities in the endosperm control the dry matter accumulation of grains in indica-japonica rice hybrids.
Abstract: The physiological and biochemical factors contributing to poor grain filling of indica-japonica rice (Oryza sativa L.) hybrids were studied by analyzing the role of grain sink strength in dry matter accumulation of grains of two types of rice cultivars, Yayou 2 (an indica-japonica hybrid) and Yanjing 2 (a japonica cultivar). Carbon dioxide enrichment and plant hormone application were imposed at anthesis and the number of endosperm cells, dry matter accumulation and the activities of some sugar-metabolizing enzymes of grains were measured during grain filling. In Yayou 2, strong-potential grains (SPGs) accumulated dry weight much earlier than weak-potential grains (WPGs), but this difference was not obvious for Yanjing 2. Carbon dioxide enrichment imposed after heading significantly stimulated dry matter accumulation of WPGs of Yayou 2, but had little influence on WPGs of Yanjing 2 and SPGs of both cultivars. Leaf sheath dry matter decreased steadily in both cultivars during early stages of grain filling and accumulated during the later stages. Carbon dioxide enrichment increased leaf sheath dry matter. Dry matter accumulated by grains was linearly related to the increases in endosperm cell numbers and the activities of sucrose synthase (SS) and ADP-glucose pyrophosphorylase (AGPase) in SPGs and WPGs of both cultivars. Application of either 6-benzyladenine or abscisic acid had no significant influences on both endosperm cell number and grain dry matter accumulation. These results suggest that grain sink strength, determined by both cell numbers, SS and AGPase activities in the endosperm control the dry matter accumulation of grains.

Journal ArticleDOI
TL;DR: It is shown that polycomb group proteins play a central role in repressing flowering early in the plant life cycle, and that FIE-mediated polycomb complexes are an essential component of a floral repression mechanism established early during plant development.
Abstract: All plants flower late in their life cycle. For example, in Arabidopsis, the shoot undergoes a transition and produces reproductive flowers after the adult phase of vegetative growth. Much is known about genetic and environmental processes that control flowering time in mature plants. However, little is understood about the mechanisms that prevent plants from flowering much earlier during embryo and seedling development. Arabidopsis embryonic flower (emf1 and emf2) mutants flower soon after germination, suggesting that a floral repression mechanism is established in wild-type plants that prevents flowering until maturity. Here, we show that polycomb group proteins play a central role in repressing flowering early in the plant life cycle. We found that mutations in the Fertilization Independent Endosperm (FIE) polycomb gene caused the seedling shoot to produce flower-like structures and organs. Flower-like structures were also generated from the hypocotyl and root, organs not associated with reproduction. Expression of floral induction and homeotic genes was derepressed in mutant embryos and seedlings. These results suggest that FIE-mediated polycomb complexes are an essential component of a floral repression mechanism established early during plant development.

Journal ArticleDOI
TL;DR: During seed development, coordinated developmental programs lead to the formation of the embryo, endosperm and seed coat, and the maternal effects of the genes affected in the fertilisation-independent seed class of mutants play an important role in seed development.

Journal ArticleDOI
TL;DR: The contributions of recently identified symporter proteins to solute transfer are reviewed here, as is the role of apoplastic invertases in promoting solute assimilation.

Journal ArticleDOI
TL;DR: These mutant plants have a visible phenotype resembling accelerated senescence, which was correlated with the Mutator insertion within Sbe2a, which suggests a specific role for SBEIIa in leaves, which may be necessary for normal plant development.
Abstract: Starch-branching enzymes (SBE) break the α-1,4 linkage of starch, re-attaching the chain to a glucan chain by an α-1,6 bond, altering starch structure. SBEs also facilitate starch accumulation by increasing the number of non-reducing ends on the growing chain. In maize ( Zea mays ), three isoforms of SBE have been identified. To examine the function of the SBEIIa isoform, a reverse genetics polymerase chain reaction-based screen was used to identify a mutant line segregating for a Mutator transposon within Sbe2a . To locate the insertion within the second exon of Sbe2a , the genomic sequence of Sbe2a containing the promoter and 5′ end was isolated and sequenced. Plants homozygous for sbe2a::Mu have undetectable levels of Sbe2a transcripts and SBEIIa in their leaves. Characterization of leaf starch from sbe2a::Mu mutants shows reduced branching similar to yet more extreme than that seen in kernels lacking SBEIIb activity. Characterization of endosperm starch from sbe2a::Mu mutants shows branching that is indistinguishable from wild-type controls. These mutant plants have a visible phenotype resembling accelerated senescence, which was correlated with the Mutator insertion within Sbe2a . This correlation suggests a specific role for SBEIIa in leaves, which may be necessary for normal plant development.

Journal ArticleDOI
01 Sep 2001-Planta
TL;DR: It is proposed that BRs promote seed germination by directly enhancing the growth potential of the emerging embryo in a GA- and βGLU I-independent manner.
Abstract: Seed germination of Nicotiana tabacum L. cv. Havana 425 is determined by the balance of forces between the growth potential of the embryo and the mechanical restraint of the micropylar endosperm. In contrast to the gibberellin GA4, the brassinosteroid (BR) brassinolide (BL) did not release photodormancy of dark-imbibed photodormant seeds. Brassinolide promoted seedling elongation and germination of non-photodormant seeds, but did not appreciably affect the induction of class I β-1,3-glucanase (βGLU I) in the micropylar endosperm. Brassinolide, but not GA4, accelerated endosperm rupture of tobacco seeds imbibed in the light. Brassinolide and GA4 promoted endosperm rupture of dark-imbibed non-photodormant seeds, but only GA4 enhanced βGLU I induction. Promotion of endosperm rupture by BL was dose-dependent and 0.01 µM BL was most effective. Brassinolide and GA4 promoted abscisic acid (ABA)-inhibited dark-germination of non-photodormant seeds, but only GA4 replaced light in inducing βGLU I. These results indicate that BRs and GAs promote tobacco seed germination by distinct signal transduction pathways and distinct mechanisms. Gibberellins and light seem to act in a common pathway to release photodormancy, whereas BRs do not release photodormancy. Induction of βGLU I in the micropylar endosperm and promotion of release of 'coat-enhanced' dormancy seem to be associated with the GA-dependent pathway, but not with BR signalling. It is proposed that BRs promote seed germination by directly enhancing the growth potential of the emerging embryo in a GA- and βGLU I-independent manner.

Journal ArticleDOI
TL;DR: Although both beta-1,3-glucanase and chitinase were expressed in tomato endosperm cap tissue prior to radicle emergence, it was found no evidence that they were directly involved in cell wall modification or tissue weakening.
Abstract: β-1,3-Glucanase (EC 3.2.1.39) and chitinase (EC 3.2.1.14) mRNAs, proteins, and enzyme activities were expressed specifically in the micropylar tissues of imbibed tomato (Lycopersicon esculentum Mill.) seeds prior to radicle emergence. RNA hybridization and immunoblotting demonstrated that both enzymes were class I basic isoforms. β-1,3-Glucanase was expressed exclusively in the endosperm cap tissue, whereas chitinase localized to both endosperm cap and radicle tip tissues. β-1,3-Glucanase and chitinase appeared in the micropylar tissues of gibberellin-deficient gib-1 tomato seeds only when supplied with gibberellin. Accumulation of β-1,3-glucanase mRNA, protein and enzyme activity was reduced by 100 μM abscisic acid, which delayed or prevented radicle emergence but not endosperm cap weakening. In contrast, expression of chitinase mRNA, protein, and enzyme activity was not affected by abscisic acid. Neither of these enzymes significantly hydrolyzed isolated tomato endosperm cap cell walls. Although both β-1,3-glucanase and chitinase were expressed in tomato endosperm cap tissue prior to radicle emergence, we found no evidence that they were directly involved in cell wall modification or tissue weakening. Possible functions of these hydrolases during tomato seed germination are discussed.

Journal ArticleDOI
TL;DR: The tissue localization and expression patterns of both LeEXP8 and LeEXP10 suggest developmentally specific roles during embryo and seedling growth.
Abstract: Expansins are plant proteins that can induce extension of isolated cell walls and are proposed to mediate cell expansion. Three expansin genes were expressed in germinating tomato (Lycopersicon esculentum Mill.) seeds, one of which (LeEXP4) was expressed specifically in the endosperm cap tissue enclosing the radicle tip. The other two genes (LeEXP8 and LeEXP10) were expressed in the embryo and are further characterized here. LeEXP8 mRNA was not detected in developing or mature seeds but accumulated specifically in the radicle cortex during and after germination. In contrast, LeEXP10 mRNA was abundant at an early stage of seed development corresponding to the period of rapid embryo expansion; it then decreased during seed maturation and increased again during germination. When gibberellin-deficient (gib-1) mutant seeds were imbibed in water, LeEXP8 mRNA was not detected, but a low level of LeEXP10 mRNA was present. Expression of both genes increased when gib-1 seeds were imbibed in gibberellin. Abscisic acid did not prevent the initial expression of LeEXP8 and LeEXP10, but mRNA abundance of both genes subsequently decreased during extended incubation. The initial increase in LeEXP8, but not LeEXP10, mRNA accumulation was blocked by low water potential, but LeEXP10 mRNA amounts fell after longer incubation. When seeds were transferred from abscisic acid or low water potential solutions to water, abundance of both LeEXP8 and LeEXP10 mRNAs increased in association with germination. The tissue localization and expression patterns of both LeEXP8 and LeEXP10 suggest developmentally specific roles during embryo and seedling growth.

Journal ArticleDOI
TL;DR: Comparisons of SBEII gene structures among wheat, maize, and Arabidopsis indicate the lineage of the SBEii genes.
Abstract: Genes and cDNAs for starch-branching enzyme II (SBEII) have been isolated from libraries constructed from Aegilops tauschii and wheat (Triticum aestivum) endosperm, respectively. One class of genes has been termed wSBEII-DA1 and encodes the N terminus reported for an SBEII from wheat endosperm. On the basis of phylogenetic comparisons with other branching enzyme sequences, wSBEII-DA1 is considered to be a member of the SBEIIa class. The wSBEII-DA1 gene consists of 22 exons with exons 4 to 21 being identical in length to the maize (Zea mays) SBEIIb gene, and the gene is located in the proximal region of the long arm of chromosome 2 at a locus designated sbe2a. RNA encoding SBEIIa can be detected in the endosperm from 6 d after flowering and is at its maximum level from 15 to 18 d after anthesis. Use of antibodies specific for SBEIIa demonstrated that this protein was present in both the soluble and granule bound fractions in developing wheat endosperm. We also report a cDNA sequence for SBEIIa that could arise by variant transcription/splicing. A second gene, termed wSBEII-DB1, was isolated and encodes an SBEII, which shows greater sequence identity with SBEIIb-type sequences than with SBEIIa-type sequences. Comparisons of SBEII gene structures among wheat, maize, and Arabidopsis indicate the lineage of the SBEII genes.

Journal ArticleDOI
TL;DR: FIS genes appear to be potent regulators of the establishment of the anterior-posterior polar axis in the endosperm, which correlates with the ectopic expression of a posterior molecular marker when fis ovules are fertilized.

Journal ArticleDOI
TL;DR: Endosperm mitosis has greater sensitivity than endoreduplication to water deficit, and nuclear numbers and size were examined and transcript levels of genes which have recognized roles in the cell cycle were quantified.
Abstract: Water deficit at the early post-pollination stage in cereal grains decreases endosperm cell division and, in turn, decreases the capacity for storage material accumulation. Post-mitotic replication of nuclear DNA (endoreduplication) may also play a role in stress effects. To gain a better understanding of the extent to which cell proliferation and endoreduplication are affected by water deficit, nuclear numbers and size were examined in endosperms of maize (Zea mays L.) by flow cytometry and the transcript levels of genes which have recognized roles in the cell cycle were quantified. Water deficit from 5-13 d after pollination (DAP) decreased the rate of endosperm cell division by 90% and inhibited [3H]-thymidine incorporation into DNA from 9-13 DAP. The proportion of nuclei engaging in endoreduplication and nuclear DNA content increased steadily from 9-13 DAP in controls, but water deficit initially increased the proportion of endoreduplicating nuclei at 9 DAP, then halted further entry into endoreduplication and S-phase cycling from 9-13 DAP. Transcript levels of alpha-tubulin, and the S-phase gene products histone H3 and PCNA were not affected by water deficit until 13 DAP, whereas those of ZmCdc2, a cyclin dependent kinase (CDK) with regulatory roles in mitosis, were inhibited substantially from 9-13 DAP. Cell proliferation and associated processes were inhibited at initial stages of the stress episode, whereas endoreduplication and associated S-phase processes were not inhibited until the stress was more advanced. It was concluded that endosperm mitosis has greater sensitivity than endoreduplication to water deficit.

Journal ArticleDOI
TL;DR: Towards understanding the GA signaling pathway, GA response mutants have been isolated and characterized, some of which are affected in GA-stimulated seed germination.
Abstract: Bioactive gibberellins (GAs) promote seed germination in a number of plant species. In dicots, such as tomato and Arabidopsis, de novo GA biosynthesis after seed imbibition is essential for germination. Light is a crucial environmental cue determining seed germination in some species. The red (R) and far-red light photoreceptor phytochrome regulates GA biosynthesis in germinating lettuce and Arabidopsis seeds. This effect of light is, at least in part, targeted to mRNA abundance of GA 3-oxidase, which catalyzes the final biosynthetic step to produce bioactive GAs. The R-inducible GA 3-oxidase genes are predominantly expressed in the hypocotyl of Arabidopsis embryos. This predicted location of GA biosynthesis appears to correlate with the photosensitive site determined by using R micro-beam in lettuce seeds. The GA-deficient non-germinating mutants have been useful for studying how GA stimulates seed germination. In tomato, GA promotes the growth potential of the embryo and weakens the structures surrounding the embryo. Endo-b-mannanase, which is produced specifically in the micropylar endosperm in a GA-dependent manner, may be responsible for breaking down the endosperm cell walls to assist germination. Recently, a role for GA in overcoming the resistance imposed by the seed coat was also suggested in Arabidopsis from work with a range of seed coat mutants. Towards understanding the GA signaling pathway, GA response mutants have been isolated and characterized, some of which are affected in GA-stimulated seed germination.

Journal ArticleDOI
TL;DR: It is confirmed that kernel development is more tolerant to high temperature in B73 than in Mo17, and the difference appears to be due mainly to the ability of B73 to maintain a higher kernel sink capacity after exposure to HTT during endosperm cell division.
Abstract: High temperature during endosperm cell division reduces grain yield of maize (Zea mays L.). The objective of the study was to determine if there were differences in tolerance of two inbred lines (B73 and Mo17) to exposure to brief high temperature treatments (HTTs). Beginning 5 d after pollination (DAP), kernels were exposed to a continuous 35 degrees C temperature for either 4 or 6 d. The effects of HTTs on kernel development, ultrastructure, and sink capacity were evaluated under both in vitro and field conditions. In B73, the 4 and 6 d HTT reduced final kernel dry weights >40 to 60% under in vitro and 79 to 95% under field conditions, compared with the controls. The HTT-induced reduction in kernel mass was due mainly to reduction in starch granule number, since by 16 DAP the endosperm cell number had recovered and was not significantly different from the controls. In contrast, in Mo17 both the number of endosperm cells and starch granules were reduced by >45 to 80% by the 4 and 6 d HTT imposed under the two growing conditions. Hence, these data and kernel ultrastructure evidence confirm that kernel development is more tolerant to high temperature in B73 than in Mo17. The difference appears to be due mainly to the ability of B73 to maintain a higher kernel sink capacity after exposure to HTT during endosperm cell division. Exploiting the differential response of these genotypes appears to be a viable approach to further elucidate the physiological basis for heat tolerance during early kernel development.

Journal ArticleDOI
TL;DR: An alternation of amino acid and carbon metabolism leads to overproduction and accumulation of FAA in opaque-2 mutants, which is suggested to be the basis for the high-FAA phenotype of opaque- 2 maize.
Abstract: The opaque-2 mutation in maize (Zea mays) is associated with an increased level of free amino acids (FAA) in the mature endosperm. In particular, there is a high concentration of lysine, the most limiting essential amino acid. To investigate the basis for the high-FAA phenotype of opaque-2 maize, we characterized amino acid accumulation during endosperm development of several wild-type and opaque-2 inbreds. Oh545o2 was found to have an exceptionally high level of FAA, in particular those derived from aspartate (Asp) and intermediates of glycolysis. The FAA content in Oh545o2 is 12 times greater than its wild-type counterpart, and three and 10 times greater than in Oh51Ao2 and W64Ao2, respectively. We crossed Oh545o2 to Oh51Ao2 and analyzed the F2:3 progeny to identify genetic loci linked with the high FAA level in these mutants. Quantitative trait locus mapping identified four significant loci that account for about 46% of the phenotypic variance. One locus on the long arm of chromosome 2 is coincident with genes encoding a monofunctional Asp kinase 2 and a bifunctional Asp kinase-homo-Ser dehydrogenase-2, whereas another locus on the short arm of chromosome 3 is linked with a cytosolic triose phosphate isomerase 4. The results suggest an alternation of amino acid and carbon metabolism leads to overproduction and accumulation of FAA in opaque-2 mutants.

Journal ArticleDOI
TL;DR: Based on results obtained from this study, strategies for increasing starch synthesis by manipulation of AGPase activities in developing seeds and, in turn, seed yields are discussed.

Journal ArticleDOI
TL;DR: A waxy mutant of diploid wheat (Triticum monococcum L.) was isolated by screening M(3) seeds derived from 1% ethyl methanesulfonate (EMS) mutagenized materials with KI-I(2) staining of endosperm starch.

Journal ArticleDOI
TL;DR: The mode of reproduction was characterized for 113 accessions of the tetraploid facultative apomictic species Hypericum perforatum using bulked or single mature seeds in the flow cytometric seed screen (FCSS) and genotypes were detected which at a high frequency produced embryos either from reduced parthenogenetic or unreduced fertilized egg cells.
Abstract: The mode of reproduction was characterized for 113 accessions of the tetraploid facultative apomictic species Hypericum perforatum using bulked or single mature seeds in the flow cytometric seed screen (FCSS). This screen discriminates several processes of sexual or asexual reproduction based on DNA contents of embryo and endosperm nuclei. Seed formation in H. perforatum proved to be highly polymorphic. Eleven different routes of reproduction were determined. For the first time, individual seeds were identified that originated from two embryo sacs: the endosperm from an aposporous and the embryo from the legitimate meiotic embryo sac. Moreover, diploid plants were discovered, which apparently reproduce by a hitherto unknown route of seed formation, that is chromosome doubling within aposporous initial cells followed by double fertilization. Although most plants were tetraploid and facultative sexual/apomictic, diploid obligate sexuals and tetraploid obligate apomicts could be selected. Additionally, genotypes were detected which at a high frequency produced embryos either from reduced parthenogenetic or unreduced fertilized egg cells. The endosperm developed most frequently after fertilization of the central cell in aposporous embryo sacs (pseudogamy) but in few cases also autonomously. The genetic control of apomixis appears to be complex in H. perforatum. Basic material was developed for breeding H. perforatum, and strategies are suggested for elucidation of inheritance as well as evolution of apomixis and for molecular approaches of apomixis engineering.